Система заземления TN-S. Классификация систем заземления электроустановок Что представляет собой система tn c

Подключение заземления является одним из наиболее важных способов предохранить человека от поражения блуждающим током электрической сети. Для этого применяются соответствующие системы заземления. От них будет зависеть не только безопасность человека, но и правильное функционирование электротехнических приборов и другого защитного оборудования.

Системы заземления принято классифицировать. Стандарты, по которым определяется тип защитной конструкции заземления, были приняты Международной электротехнической комиссией и Госстандартом Российской Федерации . Так принято различать несколько типов систем.

Система TN. Данный тип имеет характерное отличие от других – наличие глухозаземленной нейтрали в схеме. В TN все открытые проводящие участки любого электрооборудования подсоединяются к определенному глухозаземленному нейтральному участку отдельного источника питания электроэнергией путем подключения защитных проводников («ноль»). В этой системе глухозаземленная нейтраль означает, что «ноль» трансформатора подключен к заземляющему контуру. Используется для заземления электрического оборудования (телевизоры, системный блок компьютера, холодильник, бойлер и другая техника).

Подсистема TN-C. Это система TN, где защитные и нулевые проводники на всей линии совмещаются в одном PEN. Это значит, что выполнено специальное защитное зануление . Данная система была актуальна в 90-х годах, но на сегодняшний день устарела. Обычно используется для внешнего освещения для экономии средств. Не рекомендуется для установки в современных жилых зданиях.

Подсистема TN-S. В TN-S защитный и нулевой провод ники разделены. Данная подсистема считается самой надежной и безопасной, но это обычно влечет большие финансовые траты. Используется для предохранения телевизионных коммуникаций, что позволят устранить большинство помех при слаботочной сети. Подсистема TN-C-S . Система заземления TN C S является промежуточной схемой. В данном случае защитный и рабочий контакты должны совмещаться только в одном месте. Зачастую это делают в главном распределительном щите комплекса.

Совмещается. А во всех остальных участках системы TN C S эти проводники должны быть разделены друг от друга. Данная система считается самым оптимальным решением для электрической сети любого здания (промышленные, жилые, общественные).

Выгодное соотношение качества и цены. Другие способы подключения заземляющих электроустановок не позволяют обеспечить надежное функционирование на отдельных частях. В зависимости от требуемого уровня сопротивления подбирается сечения проводников.

Система ТТ. Система данного типа имеет характерную особенность – нулевой проводник источника заземляется, а открытые проводящие части электроустановок подключены к заземлению. Заземляющий контур же независим от заземленной нейтрали основного источника электроснабжения. Это означает, что оборудования используется отдельный контур заземления, не связанный с нулевым проводником.

Система ТТ используется для различных мобильных сооружений или в местах, где нет возможности оборудовать защитное заземление по всем стандартам и нормам. Предусматривается обязательное подключение устройств защитного отключения с качественным заземлением (при напряжении в 380 вольт сопротивление должно быть не менее 4 Ом). Уровень сопротивления должен учитывать конкретный тип автоматического выключателя.


Система IT. Характерная особенность схемы - нулевой проводник источника питания заземляется через электрические приборы или от земли. Приборы должны иметь высокое сопротивление, а проводящие части электроустановок заземляться при помощи заземляющего оборудования. Высокое сопротивление электрических приборов позволит увеличить надежность системы.

IT используется не часто, обычно для электрооборудования в зданиях особого назначения (например, бесперебойное электроснабжение системного блока ПЭВМ, аварийное освещение больниц), где повышено требование к надежности и безопасности. У каждой из этих систем есть свои преимущества и недостатки. В связи с этим необходимо правильно подбирать схему установки защитного заземления для конкретных ситуаций.

Как работает TN

В соответствии с нормами Правил устройства электроустановок (ПУЭ) система TN является самой надежной. Принцип ее работы позволяет обеспечить надежную защиту человека и подключенного электрооборудования от блуждающих токов.

Главное условие для безопасной и надежной работы системы TN – значение тока между фазным проводником и неизолированной частью при возникновении короткого замыкания в электрической сети обязательно должны превышать значение тока, при котором должны срабатывать защитные устройства. Для данной системы также возникает необходимость подключения устройства защитного отключения и дифференциальных автоматов.

Видео «Продвинутая система заземления»

Устраиваем систему заземления


Если вы решили сделать заземляющий контур самостоятельно, то для заземляющей конструкции необходимо использовать обычный черный металл. Для этого подойдут железные уголки, стальные полосы, трубы и другие конструкции. Такой материал имеет оптимальное сопротивление и невысокую стоимость. Перед началом монтажных работ нужно составить проект, который будет содержать описание конструкции, используемого материала, размеров, места расположения технической коммуникации, тип грунта и другие параметры.

Обязательно нужно знать, в какой тип грунта будет устанавливаться контур заземления. От этого будет зависеть уровень сопротивления. Так в песчаной почве сопротивление значительно выше, чем в обычной земле. На сопротивление будет влиять влажность грунта и наличие подземных вод. Влажность земли будет изменяться в зависимости от климата местности, где будут проводиться монтажные работы.

Схема и монтаж

Специалисты в области электротехники настоятельно рекомендуют использовать готовые схемы по установке заземляющих конструкций. Готовое оборудование можно приобрести в специализированных магазинах. К заземляющему комплекту прилагается соответствующая схема подключения и монтажа. Комплект сертифицирован и имеет гарантию на эксплуатацию. Но такую конструкцию можно сделать самостоятельно. Наиболее распространенные заземляющие конструкции имеют форму треугольника и квадрата. Первый способ более экономный.


На месте, где будет установлена защитная конструкция, нужно начертить условный равносторонний треугольник. Его вершины должны быть на расстоянии 1,5 м друг от друга. По контуру выкапывается траншея глубиной в 1 м. В местах вершин будут забиты 3 основных проводника – круглая арматура (диаметр – от 35 мм, длина – 2-2,5м). Арматура забивается в землю, затем они должны соединиться металлической шиной (ширина – 40 мм, толщина – 4 мм). Крепление осуществляется сваркой. Заземляющий провод будет отходить от конструкции к распределительному щиту.

Затем траншея зарывается. После завершения монтажных работ нужно провести проверку заземляющего контура. Для этого используется специальное оборудование, которое позволяет измерить сопротивление на отдельных участках земли (до 15 метров от заземляющей конструкции). При правильной установке сопротивление не будет превышать 4 Ома. При более высоких значениях нужно перепроверить места соединения. Мультиметр для проверки не подойдет.

Практически каждый дом оборудован заземлением. Его задачей, является обеспечение безопасности при использовании человеком электрических установок. Среди профессионалов принято разделять системы заземления на несколько видов. О существующих вариантах мы и поговорим в нашей статье.

В мировой области электричества принято классифицировать заземление на три типа, и определить их можно при помощи аббревиатуры ТТ, TN, IT. Каждая из букв имеет следующее значение:

  • Т - заземление, переводится от французского слова terra - почва;
  • N - это нейтраль, означает, что данная система занулена;
  • I - говорит о наличии изоляции заземлителя.

Важно! Расположение букв систем заземления играет важную роль и несет определенное обозначение.

Значение первой буквы показывает принцип заземления источника питания, обозначение второй буквы в системе указывает на заземление проводящих открытых деталей электрического оборудования. Последние буквы говорят о функциональности нулевого и защитного проводников.

Системы заземления для частного дома

Давайте рассмотрим варианты заземления поближе, каждому из которых уделим отдельный раздел.

Заземление TN и его подвиды

О заземляющих системах уже многое казано, однако мало кто уделяет внимание расшифровке. Создавая защиту электрооборудования, нужно обязательно учитывать каждую подробность, ведь впоследствии часто возникают проблемы при ремонте или реконструкции системы.

Эта разновидность отличается от остальных тем, что имеет грузозаземленную нейтраль. Эта установка предусматривает присоединение открытых проводящих частей к нулевой точке питающего источника. Вы наверняка спросите, что такое «глухозаземленная нейтраль». Общими словами, это понятие представляет собой подключение нейтрального проводника непосредственно к заземляющему проводнику на трансформаторной установке.

Электрическая безопасность в этой системе достигается благодаря превышению напряжения открытой части установки и «фазы» над значением срабатывания электрического потенциала за конкретное время.

Система заземления TT: подробная характеристика

Данный тип заземления отличается от предыдущей схемы тем, что имеет «землю» на нейтральном прводе, при этом открытые проводящие части электрооборудования, непосредственно соединяются с системой защиты. Система ТТ предусматривает отдельный монтаж контура заземления. Этот тип защиты применяется в современных условиях для бытовок, мобильных и переносных сооружений.


Системы заземления для квартирного дома

Важно! При разработке этой системы заземления, необходимо использовать устройство защитного отключения (УЗО).

Заземляющая конструкция IT

IT заземление используется значительно реже, в отличие от предыдущих систем. Можно встретить такое оборудование в зданиях специального назначения и на промышленных предприятиях . Преимущественно устанавливается для аварийного освещения.

Характеризуется конструкция наличием заизолированной нейтрали источника питания от «земли». В некоторых случаях возможно ее заземление через потребительные приборы.

Важно! Применять IT систему заземления необходимо только в условиях повышенного требования энергобезопасности.

Каким методом выполняют устройство системы заземления?


Схема системы заземления

Сегодняшним днем зарегистрировано несколько технологий, предусматривающих устройство распространенных систем заземления. Весьма широко применяются два метода, которые мы сейчас и разберём.

  1. Стандартная методика характеризуется выполнением заземлительной конструкции посредством сырья черной металлургии. Изначально разрабатывается проект, и после подготовки всего инструментария, приступают к реализации контура на местности. При этом учитываются ряд факторов, которые могут повлиять на конструкцию. Использование данной технологии усовершенствовалось на протяжении многих лет, и в наше время применяется для многих климатических условий.
  2. Модульное заземление предполагает использование специального комплекта, найти который можно в торговых точках. В этом случае применяются материалы фабричного производства.

Монтаж и сырье для модульного заземления

Для установки подобного типа устройства используют: стальные стержни с омедненными частями, муфты и соединительные детали, комплект для модульного заземлителя (латунные, медные и омедненные детали), стальные наконечники, антикоррозийную пасту, защитную ленту. Когда подготовили материал, следуем правилам монтажа:


Какие бывают виды систем заземления

  • Первым делом устанавливается вертикальный стержень из стали на местности;
  • Замеряется промежуточное сопротивление;
  • Производится установка оставшихся стальных стержней;
  • На этом этапе производится прокладка горизонтального заземляющего проводника;
  • Все элементы конструкции соединяются при помощи клемм или сварного оборудования, покрываются защитной лентой. Также не нужно забывать об антикоррозийной обработке.

Внимание! Выполняя

Содержание:

Важнейшей частью проектирования, монтажа и дальнейшей эксплуатации оборудования и электроустановок является правильно выполненная система заземления. В зависимости от используемых заземляющих конструкций, заземление может быть естественным и искусственным. Естественные заземлители представлены всевозможными металлическими предметами, постоянно находящимися в земле. К ним относится арматура, трубы, сваи и прочие конструкции, способные проводить ток.

Но электрическое сопротивление и другие параметры, присущие этим предметам, невозможно точно проконтролировать, и спрогнозировать. Поэтому с таким заземлением нельзя нормально эксплуатировать любое электрооборудование. Нормативными документами предусматривается только искусственное заземление с использованием специальных заземляющих устройств.

Классификация систем заземления

В зависимости от схем электрических сетей и других условий эксплуатации, применяются системы заземления TN-S , TNC-S, TN-C, TT, IT, обозначаемые в соответствии с международной классификацией. Первый символ указывает на параметры заземления источника питания, а второй буквенный символ соответствует параметрам заземления открытых частей электроустановок.

Буквенные обозначения расшифровываются следующим образом:

  • Т (terre - земля) - означает заземление,
  • N (neuter - нейтраль) - соединение с нейтралью источника или зануление,
  • I (isole) соответствует изоляции.

Нулевые проводники в ГОСТе имеют такие обозначения:

  • N - является нулевым рабочим проводом,
  • РЕ - нулевым защитным проводником,
  • PEN - совмещенным нулевым рабочим и защитным проводом заземления.

Система заземления TN-C

Заземление TN относится к системам с глухозаземленной нейтралью. Одной из его разновидностей является заземляющая система TN-C. В ней объединяются функциональный и защитный нулевые проводники. Классический вариант представлен традиционной четырехпроводной схемой, в которой имеется три фазных и один нулевой провод. В качестве основной шины заземления используется, соединяемая со всеми токопроводящими открытыми деталями и металлическими частями, с помощью дополнительных нулевых проводов.


Главным недостатком системы TN-C является потеря защитных качеств при отгорании или обрыве нулевого проводника. Это приводит к появлению напряжения, опасного для жизни, на всех поверхностях корпусов устройств и оборудования, где отсутствует изоляция. В системе TN-C нет защитного заземляющего проводника РЕ, поэтому у всех подключенных розеток заземление также отсутствует. В связи с этим для всего используемого электрооборудования требуется устройство - подключение деталей корпуса к нулевому проводу.

В случае касания фазного провода открытых частей корпуса, произойдет короткое замыкание и срабатывание автоматического предохранителя. Быстрое аварийное отключение устраняет опасность возгорания или поражения людей электрическим током. Категорически запрещается использовать в ванных комнатах дополнительные контуры, уравнивающие потенциалы, в случае эксплуатации заземляющей системы TN-C.


Несмотря на то что схема tn-c является наиболее простой и экономичной, она не используется в новых зданиях. Эта система сохранилась в домах старого жилого фонта и в уличном освещении, где вероятность поражения электрическим током крайне низкая.

Схема заземления TN-S, TN-C-S

Более оптимальной, но дорогостоящей схемой считается заземляющая система TN-S. Для снижения ее стоимости были разработаны практические меры, позволяющие использовать все преимущества данной схемы.


Суть этого способа заключается в том, что при подаче электроэнергии с подстанции, применяется комбинированный нулевой проводник PEN, соединяемый с глухозаземленной нейтралью. На вводе в здание он разделяется на два проводника: нулевой защитный РЕ и нулевой рабочий N.


Система tn-c-s обладает одним существенным недостатком. При отгорании или каком-либо другом повреждении проводника PEN на участке от подстанции до здания, на проводе РЕ и деталях корпуса приборов, связанных с ним, возникает опасное напряжение. Поэтому одним из требований нормативных документов по обеспечению безопасного использования системы TN-S , являются специальные мероприятия по защите провода PEN от повреждений.

Схема заземления TT

В некоторых случаях, когда электроэнергия подается по традиционным воздушным линиям, становится довольно проблематично защитить комбинированный заземляющий проводник PEN при использовании схемы TN-C-S. Поэтому в таких ситуациях применяется система заземления по схеме ТТ. Ее суть заключается в глухом заземлении нейтрали источника питания, а также использовании четырех проводов для передачи трехфазного напряжения . Четвертый проводник используется в качестве функционального нуля N.


Подключение модульно-штыревого заземлителя осуществляется чаще всего со стороны потребителей. Далее он соединяется со всеми защитными проводниками заземления РЕ, связанными с деталями корпусов приборов и оборудования.

Схема TT применяется сравнительно недавно и уже хорошо зарекомендовала себя в частных загородных домах . В городах система ТТ применяется на временных объектах, например, торговых точках. Подобный способ заземления требует использования защитных устройств в виде УЗО и выполнения технических мероприятий по защите от грозы.

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.


Основной деталью системы IT является изолированная нейтраль источника I, а также Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C , TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

Мой рассказ будет состоять из трёх частей.
1 часть. Заземление (общая информация , термины и определения).
2 часть. Традиционные способы строительства заземляющих устройств (описание, расчёт, монтаж).
3 часть. Современные способы строительства заземляющих устройств (описание, расчёт, монтаж).


В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией - ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками - лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления

А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе - начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.

Заземление - преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток . Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:

Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).
Проводящая часть - это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро:-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:

Сопротивление заземления - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).
Сопротивление заземления - основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)
Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро:-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:

- “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления - толстыми красными линиями:

Удельное электрическое сопротивление грунта - параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли - на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:
в составе внешней молниезащитной системы в виде заземленного молниеприёмника
в составе системы защиты от импульсного перенапряжения
в составе электросети объекта

Б2.1. Заземление в составе молниезащиты
Молния - это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” в конденсаторе и газовый разряд в лампе.

Воздух - это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы - таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.

Классический УЗИП представляет собой газовый разрядник, рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой - подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд:-) между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите - заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления - это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь , через которую побежит ток, вызывающий в теле повреждения внутренних органов - прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства , за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).

Сопротивление в основном зависит от двух условий:
площадь (S) электрического контакта заземлителя с грунтом
электрическое сопротивление (R) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая - как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока - морская вода.
Примером “плохого” для заземления грунта является сухой песок.
(Если интересно, можно посмотреть, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:
для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)

В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:


Точность расчёта обычно невысока и зависит опять же от грунта - на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади - образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже - значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов - у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве - в следующих частях.

Алексей Рожанков, технический специалист.

При подготовке данной статьи использовались следующие материалы:
Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания
ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87
Публикации на сайте “ ”
Собственный опыт и знания

Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы:

  • системы с глухозаземленной нейтралью к ним относятся система заземления TN (которая в свою очередь делится на системы TN-C, TN-C-S, TN-S) и система заземления TT
  • системы с изолированной нейтралью к ним относится система заземления IT

Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:

  • T (от франц. terre - земля) - заземлено;
  • N (от франц. neutre - нейтраль) - соединение с нейтралью источника питания (зануление);
  • I (от франц. isolé - изолированный) - изолировано от заземления.

Так же в статье встречаются следующие аббревиатуры:

  • N - функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
  • PE - защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
  • PEN - проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.

Теперь подробно разберем перечисленные типы систем заземления.

2. Система заземления TN

Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).

Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.

2.1 Система заземления TN-C

Система TN-C — это система TN , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).

Система заземления TN-C схема:

Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры () и отключению напряжения.

Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.

Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.

2.2 Система заземления TN-C-S

Система TN- C- S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N проводник) и нулевой защитный (PE проводник).

Система заземления TN-C-S схема:

Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от , а ее устройство обходится немногим дороже системы системы TN-C.

Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.

Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.

Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.

Подробную инструкцию по устройству заземления в частном доме по системе TN-C-S вы можете посмотреть .

2.3 Система заземления TN-S

Система TN- S — это система TN , в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.

Система заземления TN-S схема:

Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.

Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).

3. Система заземления TT

Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Система заземления TT схема:

В соответствии с пунктом 1.7.59. ПУЭ питание электроустановок по системе ТТ , допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены . Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

R а I а ≤ 50 В,

где I а — ток срабатывания защитного устройства; R a — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.

Для установки «земли» в жилых и промышленных помещениях используются различные типы проводов и принципы установки защитных конструкций. Системы заземления электроустановок TN (подтипы TN S, TN C S), ТТ и IT могут применяться как для частного дома, так и для квартиры.

Виды

Обозначение всех систем расшифровывается следующим образом:

  • Первая буква (t по умолчанию) – указывает на принцип работы источника питания;
  • Вторая буква (N, T, I) – определяет принцип заземления и защиты открытых частей различных электрических отводов. Эта маркировка является международно принятой аббревиатурой.
Фото – схемы

Классификация систем заземления и их описание по заземлению отводов:

  1. N – принцип зануления посредством подключения к нейтрали;
  2. T – контур заземлен;
  3. I – изолированный отвод, т. е., у электрооборудования нет открытых контактов. Это применяется в основном для защиты производственных установок.

Также современными параметрами ГОСТ введено такое понятие, как нулевой заземляющий проводник (используется в системах с напряжением до 1000 в). Он бывает N – просто нулевой, PE – земля, PEN – земля, объединенная с нулем.

Принцип работы каждой указанной системы разный, поэтому ПУЭ не разрешает использовать определенные типы защитного заземления до проверки соответствия требованиям определенных электрических сетей.

Назначение

Рассмотрим описание работы и схемы каждой из использующихся систем заземления.

TN – это система, в которой нейтральный провод глухо заземлен, а все остальные электрические отводы подключены к ней. Особенности этой схемы в том, что для её реализации возле трансформатора устанавливается специальный реактор, который гасит дугу, появляющуюся в проводке.

Фото – TN-C

У этой системы есть две разновидности: TN-С и TN-CS. TN-С характеризуется тем, что для защиты системы электроснабжения используется одни комбинированный отвод, объединяющий нейтраль и землю. Этот проводник чаще всего используется в жилых помещениях, промышленных зонах и т. д. У него свои достоинства и недостатки :

  1. К плюсам можно отнести простоту и универсальность установки. Устройство такого заземления легко производится своими руками;
  2. Но существенным недостатком является отсутствие отдельного заземляющего провода. Во многоквартирном доме такая система может быть не просто неэффективна, но и опасна. Кроме того, когда открытые отводы находятся под напряжением, они могут ударить током. Чтобы предупредить это, многие хозяева отдельно обустраивают зануление сети;
  3. Перед монтажом требуется провести предварительный расчет сечения проводников;
  4. При использовании этой методики нельзя производить выравнивание потенциалов;
  5. В основном она используется для заземления дачи, старых квартир или частных домов. Для современных новостроек применяется очень редко, т. к. технология не подходит по своим техническим характеристикам.

Сравнительно с ней, TN-CS более безопасна для бытового использования. Она состоит из двух кабелей: заземления и нуля. Если Вы обустраиваете проводку в новом доме, то рекомендуем обратить внимание именно на такой раздельный вариант, она идеально подойдет для нового жилого фонда.

Фото – TN-S

Протягивается она от самой трансформаторной подстанции, где напрямую заземляется. Из-за этого при установке можно столкнуться с рядом проблем. Помимо этого техническое проектирование и требования ПУЭ требуют для её реализации использования трехжильного либо пятижильного провода.

Чтобы упростить установку земли, придумали систему, объединяющую достоинства и упрощающую недостатки двух предыдущих. Это TN-C-S. Здесь, как и в TNC есть нулевой провод, который способствует повышению сопротивления при утечке, но, как и TNS, она раздельная. За счет этого обеспечивает мгновенную реакцию УЗО при аварийной ситуации.

Фото – TN-C-S

Не требует использования дорогого пятижильного провода и может монтироваться в любых постройках и для различного сечения проводников. При этом нужно отметить, что заземление производится по стоякам в подъезде, поэтому предварительно обязательно нужно взять разрешение у электропоставляющей компании. Также к недостаткам нужно отнести тот факт, что если обрывается заземляющий кабель, то открытые отводы стояков могут быть под высоким напряжением.

Схема системы глухого заземления и молниезащиты TT является глухозаземленной и полностью изолированной. В ней для подключения открытых отводов электроустановок или коммуникаций используются специальные нейтральные переходники. Её принцип действия очень простой, но он нецелесообразен для дома или квартиры. Если объяснить просто, то в землю у здания забивается металлический колышек, который соединяется с отводами. К такому контуру подключается оборудование. Установка такой системы допускается только в небольших нежилых помещениях, скажем, в бане, МАФе и прочих постройках. Также может использоваться для освещения или местного отопления (теплицы, инкубатора). Профессиональный вариант можно увидеть у компании Zandz.

Фото – TT

Главным достоинством такого стержневого метода является его мобильность. При необходимости все содержимое этой модульной конструкции просто переносится на другое место, чего нельзя сделать ни с одной другой «землей». Это очень удобно, если требуется замена, проверка, осмотр или ремонт постоянной стационарной системы.


Фото – стержень

Применение системы IT в основном производится различными лабораториями или медицинскими организациями. Монтаж осуществляется посредством нейтрали, которая изолируется от заземления. При этом иногда используется, где земля подключается за счет крепления нейтрального кабеля к приборам с очень высоким сопротивлением. Её техническое исполнение обеспечивает практически полное отсутствие различных магнитных полей, вихревых токов и других недостатков прочих систем заземления. Подобный комплект (Galmar и прочие) можно купить и использовать и в бытовых целях, но он довольно дорогой. Его стоимость варьируется от 50 долларов до нескольких сотен (цена зависит от протяженности системы).

Фото – IT

Видео: зануление и заземление

Технические параметры

К каждой системе выдвигаются определенные требования, они описываются в соответствующих ГОСТах, поэтому мы отдельно расскажем только про общие особенности:

  1. Для любого заземления требуется УЗО;
  2. Нельзя подключать землю к коммуникациям или другим выводам общего пользования;
  3. Для установки стационарных систем можно использовать заземляющий контур, отдельный колышек (как в стержневой) – запрещено;
  4. Перед началом электротехнических работ обязательно проконсультируйтесь со специалистом. Более того, возможно понадобится взять разрешение на их проведение.

Применяться эта схема стала еще с 40-ых годов 20-го века. Впервые она была применена в европейских странах, где и используется до сих пор. У нас, в России, сейчас стоит точно такая же задача. Задача эта состоит вот в чем: проектируя и выполняя монтаж проводки на новых объектах в однофазных сетях, требуется применять кабельные линии, имеющие три жилы (фазная, нейтральная и жила PE), для сетей же, имеющих три фазы, такой кабель должен иметь пять рабочих жил (фазы А, В, С, нейтраль и PE). Все это должно начинаться от источника энергии вплоть до самой последней розетки потребителя. Иными словами, у такой системы заземления имеется два нейтральных провода (рабочая и защитная).

Такие требования не являются пустым звуком: подобные рекомендации, предписывающие переход от заземления по схеме TN-C на систему TN-S, или TN-C-S, обусловлены общеизвестным документом, именуемым ПУЭ (в пункте 1.7.132). Быстрый переход на эту систему невозможен по причине большой затратности и дороговизны такой системы.

Преимущества

Вот какие плюсы имеет данная схема заземления:

  1. Нет надобности контролировать состояние заземляющего контура;
  2. Значительно более высокая надежность и безопасность системы по сравнению с другими;
  3. Эта система позволяет использовать и дифавтоматы с целью повышения защищенности;
  4. Такая система практически полностью исключает появление наводок высокой частоты на потребительские силовые линии.

Недостаток ее только один – большая стоимость при переделке.

Попытаюсь подоходчивей объяснить замечательность этого перехода. Для того, чтобы это выяснить, надо рассмотреть его электросхему. Она схожа с традиционным вариантом электроснабжения, в котором, кроме фазных проводов, имеется и провод нуля, с той огромной разницей, что для него не нужно дополнительное заземление ни на «N»-линии, ни на «PE»-линии, а выполняется она лишь на первом источнике тока. Все это дает возможность выполнения разделения рабочих функций и функций защиты по разным питающим шинам. Подобная схема становится очень актуальной при полном отсутствии контроля состояния контуров защитного заземления.

Такая система стала главной рабочей заземляющей системой, применимой к зданиям, содержащим информационное и телекоммуникационное оборудование. В этой системе обеспечено полное отсутствие обратных токов РЕ-проводника , а это значительно уменьшает возможность возникновения помех электромагнитного типа. Во время эксплуатации системы, нужно, лишь, следить за тем, чтобы соблюдалась принадлежность проводов РЕ и N. Для максимального снижения помех, лучше всего, иметь встроенную (либо пристроенную) ТП.

Зданиям, в которых имеется, либо возможна установка значительного числа оборудования, обрабатывающего информацию или любого другого оборудования, которое чувствительно к помехам, требуется особенный контроль проводов защиты и проводов рабочего нуля от точки подачи питания для предотвращения, либо сведения к минимуму воздействий электромагнитного типа. Проводники эти ни в коем случае не подлежат объединению, иначе, нагрузочный ток, в особенности сверхток, что возникает во время однофазного КЗ, пойдет кроме нулевого рабочего провода, по защитному нулю и приведет к помехам.

Наконец, есть смысл рассказать об . Дело в том, что соединение оборудования с заземлителями обеспечивают именно они. Если требуется заземление непосредственного типа, то оно монтируется под специальную гайку. В розетке же, такое соединение происходит через специальные «заземляющие ножи». Розетки евростандарта от старых «совдеповских» отличны по диаметру гнезда и наличием специальных «ножей заземления».

Вывод

Отсюда мы видим, что такая система организации заземления значительно более надежна, нежели другие. Именно по этой причине в России стоит вопрос о постепенном переходе именно на эту схему заземления. Надеюсь, я достаточно доходчиво разъяснил суть и принципы заземляющей системы TN-S и ни у кого не возникнет вопросов по ее полезности, безопасности и необходимости перехода на нее всей России.

Режимы заземления нейтрали в сетях 0,4 кв

В главе 1.7 нового издания ПУЭ приведены возможные варианты (режимы) заземления нейтрали и открытых проводящих частей 1 в сетях 0,4 кВ. Они соответствуют вариантам, указанным в стандарте Международной электротехнической комиссии (МЭК).
Режим заземления нейтрали и открытых проводящих частей обозначается двумя буквами: первая указывает режим заземления нейтрали источника питания (силового трансформатора 6-10/0,4 кВ), вторая 13 открытых проводящих частей. В обозначениях используются начальные буквы французских слов :
  • Т (terre 13 земля) 13 заземлено;
  • N (neutre 13 нейтраль) 13 присоединено к нейтрали источника;
  • I (isole) 13 изолировано.
МЭК и ПУЭ предусматривают три режима заземления нейтрали и открытых проводящих частей:
  • TN 13 нейтраль источника глухо заземлена, корпусы электрооборудования присоединены к нейтральному проводу;
  • ТТ 13 нейтраль источника и корпусы электрооборудования глухо заземлены (заземления могут быть раздельными);
  • IT 13 нейтраль источника изолирована или заземлена через приборы или устройства, имеющие большое сопротивление, корпуса электрооборудования глухо заземлены.
Режим TN может быть трех видов:
  • TN-C 13 нулевые рабочий и защитный проводники объединены (С 13 первая буква англ. слова combined 13 объединенный) на всем протяжении. Объединенный нулевой проводник называется PEN по первым буквам англ. слов protective earth neutral 13 защитная земля, нейтраль;
  • TN-S 13 нулевой рабочий проводник N и нулевой защитный проводник PE разделены (S 13 первая буква англ. слова separated 13 раздельный);
  • TN-C-S 13 нулевые рабочий и защитный проводники объединены на головных участках сети в проводник PEN, а далее разделены на проводники N и PE.
1 Открытая проводящая часть 13 доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции. То есть к открытым проводящим частям относятся металлические корпуса электрооборудования.
2 Косвенное прикосновение 13 электрический контакт людей и животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. То есть это прикосновение к металлическому корпусу электрооборудования при пробое изоляции на корпус.
Сравним возможные режимы заземления нейтрали и открытых проводящих частей в сетях 0,4 кВ 13 отметим преимущества и существенные недостатки. Основными критериями для сравнения являются:
  • электробезопасность (защита от поражения людей электрическим током);
  • пожаробезопасность (вероятность возникновения пожаров при коротких замыканиях);
  • бесперебойность электроснабжения потребителей;
  • перенапряжения и защита изоляции;
  • электромагнитная совместимость (в нормальном режиме работы и при коротких замыканиях);
  • повреждения электрооборудования при однофазных коротких замыканиях;
  • проектирование и эксплуатация сети.

СЕТЬ TN-C

Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей (занулением) до последнего времени были широко распространены в России.
Электробезопасность в сети TN-C при косвенном прикосновении2 обеспечивается отключением возникших однофазных замыканий на корпус с помощью предохранителей или автоматических выключателей. Режим TN-C был принят в качестве главенствующего в то время, когда основными аппаратами защиты от замыканий на корпус были предохранители и автоматические выключатели. Характеристики срабатывания этих аппаратов защиты в свое время определялись особенностями защищаемых воздушных линий (ВЛ) и кабельных линий (КЛ), электродвигателей и других нагрузок. Обеспечение электробезопасности было второстепенной задачей.
При относительно низких значениях токов однофазного КЗ (удаленность нагрузки от источника, малое сечение провода) время отключения существенно возрастает. При этом электропоражение человека, прикоснувшегося к металлическому корпусу, весьма вероятно. Например, для обеспечения электробезопасности отключение КЗ на корпус в сети 220 В должно выполняться за время не более 0,2 с . Но такое время отключения предохранители и автоматические выключатели способны обеспечить только при кратностях токов КЗ по отношению к номинальному току на уровне 6-10. Таким образом, в сети TN-C существует проблема обеспечения безопасности при косвенном прикосновении из-за невозможности обеспечения быстрого отключения. Кроме того, в сети TN-C при однофазном КЗ на корпус электроприемника возникает вынос потенциала по нулевому проводу на корпуса неповрежденного оборудования, в том числе отключенного и выведенного в ремонт. Это увеличивает вероятность поражения людей, контактирующих с электрооборудованием сети. Вынос потенциала на все зануленные корпуса возникает и при однофазном КЗ на питающей линии (например, обрыв фазного провода ВЛ 0,4 кВ с падением на землю) через малое сопротивление (по сравнению с сопротивлением контура заземления подстанции 6-10/0,4 кВ). При этом на время действия защиты на нулевом проводе и присоединенных к нему корпусах возникает напряжение, близкое к фазному. Особую опасность в сети TN-C представляет обрыв (отгорание) нулевого провода. В этом случае все присоединенные за точкой обрыва металлические зануленные корпуса электроприемников окажутся под фазным напряжением.
Самым большим недостатком сетей TN-C является неработоспособность в них устройств защитного отключения (УЗО) или residual current devices (RCD) по западной классификации.
Пожаробезопасность сетей TN-C низкая. При однофазных КЗ в этих сетях возникают значительные токи (килоамперы), которые могут вызывать возгорание. Ситуация осложняется возможностью возникновения однофазных замыканий через значительное переходное сопротивление, когда ток замыкания относительно невелик и защиты не срабатывают либо срабатывают со значительной выдержкой времени.
Бесперебойность электроснабжения3 в сетях TN-C при однофазных замыканиях не обеспечивается, так как замыкания сопровождаются значительным током и требуется отключение присоединения.
В процессе однофазного КЗ в сетях TN-C возникает повышение напряжения (перенапряжения) на неповрежденных фазах примерно на 40%. Сети TN-C характеризуются наличием электромагнитных возмущений. Это связано с тем, что даже при нормальных условиях работы на нулевом проводнике при протекании рабочего тока возникает падение напряжения. Соответственно между разными точками нулевого провода имеется разность потенциалов. Это вызывает протекание токов в проводящих частях зданий, оболочках кабелей и экранах телекоммуникационных кабелей и соответственно электромагнитные помехи. Электромагнитные возмущения существенно усиливаются при возникновении однофазных КЗ со значительным током, протекающим в нулевом проводе.
Значительный ток однофазных КЗ в сетях TN-C вызывает существенные разрушения электрооборудования. Например, прожигание и выплавление стали статоров электродвигателей. На стадии проектирования и настройки защит в сети TN-C необходимо знать сопротивления всех элементов сети, в том числе и сопротивления нулевой последовательности для точного расчета токов однофазных КЗ. То есть необходимы расчеты или измерения сопротивления петли фаза-нуль для всех присоединений. Любое существенное изменение в сети (например, увеличение длины присоединения) требует проверки условий защиты.

СЕТЬ TN-S

Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей называются пятипроводными. В них нулевой рабочий и нулевой защитный проводники разделены. Само по себе использование сети TN-S не обеспечивает электробезопасность при косвенном прикосновении, так как при пробое изоляции на корпусе, как и в сети TN-C, возникает опасный потенциал. Однако в сетях TN-S возможно использование УЗО. При наличии этих устройств уровень электробезопасности в сети TN-S существенно выше, чем в сети TN-С. При пробое изоляции в сети TN-S также возникает вынос потенциала на корпуса других электроприемников, связанных проводником PE. Однако быстрое действие УЗО в этом случае обеспечивает безопасность. В отличие от сетей TN-С обрыв нулевого рабочего проводника в сети TN-S не влечет за собой появление фазного напряжения на корпусах всех связанных данной линией питания электроприемников за точкой разрыва.
Пожаробезопасность сетей TN-S при применении УЗО в сравнении с сетями TN-С существенно выше. УЗО чувствительны к развивающимся дефектам изоляции и предотвращают возникновение значительных токов однофазных КЗ.
В отношении бесперебойности электроснабжения и возникновения перенапряжений, сети TN-S не отличаются от сетей TN-С.
Электромагнитная обстановка в сетях TN-S в нормальном режиме существенно лучше, чем в сетях TN-С. Это связано с тем, что нулевой рабочий проводник изолирован и отсутствует ответвление токов в сторонние проводящие пути. При возникновении однофазного КЗ создаются такие же электромагнитные возмущения, как и в сетях TN-С.
Наличие в сетях TN-S устройств УЗО существенно снижает объем повреждений при возникновении однофазных КЗ по сравнению с сетями TN-С. Это объясняется тем, что УЗО ликвидирует повреждение в его начальной стадии.
В отношении проектирования, настройки защит и обслуживания, сети TN-S не имеют каких-либо преимуществ по сравнению с сетями TN-С. Отмечу, что сети TN-S более дорогие в сравнении с сетями TN-С из-за наличия пятого провода, а также УЗО.

СЕТЬ TN-С-S

Это комбинация рассмотренных выше двух типов сетей. Для этой сети будут справедливы все преимущества и недостатки, указанные выше.

СЕТЬ TТ

Особенностью данного типа сетей 0,4 кВ является то, что открытые проводящие части электроприемников присоединены к заземлению, которое обычно независимо от заземления питающей подстанции 6 1310/0,4 кВ.
Электробезопасность в этих сетях обеспечивается использованием УЗО в обязательном порядке. Само по себе использование режима ТТ не обеспечивает безопасности при косвенном прикосновении. Если сопротивление местного заземлителя, к которому присоединены открытые проводящие части, равно сопротивлению заземления питающей подстанции 6(10)/0,4 кВ и возникает замыкание на корпус, то напряжение прикосновения составит половину фазного напряжения (110 В для сети 220 В). Такое напряжение опасно, и необходимо немедленное отключение поврежденного присоединения. Но отключение не может быть обеспечено автоматическими выключателями и предохранителями за безопасное для прикоснувшегося человека время из-за малой величины тока однофазного замыкания. Например, если принять, что сопротивления заземления питающей подстанции 6(10)/0,4 кВ и местного заземлителя равны 0,5 Ома, и пренебречь сопротивлениями силового трансформатора и кабеля, при фазном напряжении 220 В ток однофазного замыкания на корпус в сети ТТ составит всего 220 А. С учетом всех сопротивлений в цепи замыкания ток будет еще меньше.
Пожаробезопасность сетей TТ в сравнении с сетями TN-С существенно выше. Это связано со сравнительно малой величиной тока однофазного замыкания и с применением УЗО, без которых сети ТТ вообще эксплуатироваться не могут.
Бесперебойность электроснабжения3 в сетях TТ при однофазных замыканиях не обеспечивается, так как требуется отключение присоединения по условиям безопасности.
При возникновении однофазного замыкания на землю в сети ТТ напряжение на неповрежденных фазах относительно земли повышается, что связано с появлением напряжения на нейтрали питающего трансформатора 6(10)/0,4 кВ. Если принять сопротивления, указанные выше, то напряжение на нейтрали составит половину фазного. Такое повышение напряжения не опасно для изоляции, так как однофазное замыкание достаточно быстро ликвидируется действием УЗО, причем в большинстве случаев до своего полного развития и достижения током максимума.
В системе ТТ нескольких корпусов электроприемников обычно объединены одним защитным проводником РЕ и присоединены к общему заземлителю, отдельному, как уже сказано, от заземлителя питающей подстанции. Выполнять отдельный заземлитель в сети ТТ для каждого электроприемника нецелесообразно по экономическим соображениям. В нормальном режиме по защитному проводнику в системе ТТ не протекает ток и соответственно между корпусами отдельных электроприемников нет разности потенциалов. То есть в нормальном режиме электромагнитные возмущения (разность потенциалов между корпусами, протекание токов по конструкциям зданий и оболочкам кабелей) отсутствуют. При возникновении однофазного замыкания ток относительно невелик, при его протекании падение напряжения на защитном проводнике невелико, длительность протекания тока мала. Соответственно возникающие при этом возмущения также невелики. Таким образом, с позиций электромагнитных возмущений сеть ТТ имеет преимущество по сравнению с сетями TN-С в нормальном режиме работы и с сетями TN-С, TN-S, TN-С-S в режиме однофазного замыкания.
Объем повреждений оборудования в сетях ТТ при возникновении однофазных КЗ невелик, что связано с малой величиной тока в сравнении с сетями TN-С, TN-S, TN-С-S и с использованием УЗО, которые обеспечивают отключение до полного развития повреждения изоляции.
С точки зрения проектирования, сети ТТ имеют существенное преимущество по сравнению с сетями TN. Использование в сетях ТТ УЗО устраняет проблемы, связанные с ограничением длины линий, необходимостью знать полное сопротивление петли КЗ. Сеть может быть расширена или изменена без повторного расчета токов КЗ или замера сопротивления петли тока КЗ. Учитывая, что сам по себе ток однофазного КЗ в сетях ТТ меньше, чем в сетях TN-S, TN-С-S, сечение защитного проводника РЕ в сети ТТ может быть меньше.

СЕТЬ IT

Нейтральная точка питающего трансформатора 6(10)/0,4 кВ такой сети изолирована от земли или заземлена через значительное сопротивление (сотни Ом 13 несколько кОм). Защитный проводник в таких сетях отделен от нейтрального.
Электробезопасность при однофазном замыкании на корпус в этих сетях наиболее высокая из всех рассмотренных. Это связано с малой величиной тока однофазного замыкания (единицы ампер). При таком токе замыкания напряжение прикосновения крайне невелико и отсутствует необходимость немедленного отключения возникшего повреждения. Кроме того, в сети IT безопасность может быть улучшена за счет применения УЗО.
Пожаробезопасность сетей IT самая высокая в сравнении с сетями TN-С, TN-S, TN-С-S, ТТ. Это объясняется наименьшей величиной тока однофазного замыкания (единицы ампер) и малой вероятностью возгорания.
Сети IT отличаются высокой бесперебойностью электроснабжения потребителей. Возникновение однофазного замыкания не требует немедленного отключения.
При возникновении однофазного замыкания на землю в сети IT напряжение на неповрежденных фазах увеличивается в 1,73 раза. В сети IT с изолированной нейтралью (без резистивного заземления) возможно возникновение дуговых перенапряжений высокой кратности.
Электромагнитные возмущения в сетях IT невелики, поскольку ток однофазного замыкания мал и не создает значительных падений напряжения на защитном проводнике.
Повреждения оборудования при возникновении однофазного замыкания в сетях IT очень малы. Для эксплуатации сети IT необходим квалифицированный персонал, способный быстро находить и устранять возникшее замыкание. Для определения поврежденного присоединения необходимо специальное устройство (в западных странах применяется генератор тока с частотой, отличной от промышленной, включаемый в нейтраль). Сети IT имеют ограничение на расширение сети, так как новые присоединения увеличивают ток однофазного замыкания.

Заключение

В качестве общих рекомендаций для выбора той или иной сети можно указать следующее: 1. Сети ТN-C и ТN-C-S не следует использовать из-за низкого уровня электро- и пожаробезопасности, а также возможности значительных электромагнитных возмущений.
2. Сети TN-S рекомендуются для статичных (не подверженных изменениям) установок, когда сеть проектируется «раз и навсегда».
3. Сети ТТ следует использовать для временных, расширяемых и изменяемых электроустановок. 4. Сети IT следует использовать в тех случаях, когда бесперебойность электроснабжения является крайне необходимой.
Возможны варианты, когда в одной и той же сети следует использовать два или три режима. Например, когда вся сеть получает питание по сети TN-S, а часть ее через разделительный трансформатор по сети IT.
Отметим, что ни один из способов заземления нейтрали и открытых проводящих частей не является универсальным. В каждом конкретном случае необходимо проводить экономическое сравнение и исходить из критериев: электробезопасности, пожаробезопасности, уровня бесперебойности электроснабжения, технологии производства, электромагнитной совместимости, наличия квалифицированного персонала, возможности последующего расширения и изменения сети.