Удивительный мир органических веществ. Общие формулы органических соединений основных классов

Органические вещества, в отличие от неорганических, образуют ткани и органы живых организмов. К ним относятся белки, жиры, углеводы, нукленовые кислоты и другие.

Состав органических веществ клетки растений

Данные вещества представляют собой химические соединения, в состав которых входит углерод. Редкие исключения из этого правила – карбиды, угольная кислота, цианиды, оксиды углерода, карбонаты. Органические соединения образуются при связи углерода с любым из элементов таблицы Менделеева. Чаще всего в составе этих веществ присутствуют кислород, фосфор, азот, водород.

Каждая клетка любого из растений на нашей планете состоит из органических веществ, которые условно можно разделить на четыре класса. Это углеводы, жиры (липиды), белки (протеины), нуклеиновые кислоты. Данные соединения являются биологическими полимерами. Они принимают участие в метаболических процессах в организме как растений, так и животных на клеточном уровне.

Четыре класса органических веществ

1. – это соединения, основными структурными элементами которых являются аминокислоты. В организме растений белки выполняют различные важные функции, основная из которых – структурная. Они входят в состав разнообразных клеточных образований, регулируют процессы жизнедеятельности и откладываются про запас.

2. также входят в состав абсолютно всех живых клеток. Они состоят из простейших биологических молекул. Это сложные эфиры карбоновых кислот и спиртов. Главная роль жиров в жизнедеятельности клеток – энергетическая. Жиры откладываются в семенах и других частях растений. Вследствие их расщепления высвобождается необходимая для жизни организма энергия. Зимой многие кустарники и деревья питаются, расходуя запасы жиров и масел, которые они накопили за лето. Также следует отметить важную роль липидов в построении мембран клеток - как растительных, так и животных.

3. Углеводы являются основной группой органических веществ, благодаря расщеплению которых организмы получают необходимую энергию для жизни. Их название говорит само за себя. В структуре молекул углеводов наряду с углеродом присутствуют кислород и водород. Самым распространенным запасным углеводом, который образуется в клетках в процессе фотосинтеза, является крахмал. Большое количество этого вещества откладывается, например, в клетках клубней картофеля либо семян злаков. Другие углеводы придают сладкий привкус плодам растений.

Классификация органических веществ еще более сложна. Это обусловлено целым рядом причин: чрезвычайной многочисленностью органических соединений, сложностью и разнообразием их строения, самой историей изучения соединений углерода.
Действительно, до середины XIX в. органическая химия, по образному выражению Ф.Велера*, представлялась «дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть». Только с появлением в 1861 г. теории химического строения органических соединений «дремучий лес»
органической химии стал преобразовываться в залитый солнечным светом регулярный парк со строгой сеткой аллей и дорожек. Авторами этой теории явилось выдающееся интернациональное трио ученых-химиков: наш соотечественник А.М.Бутлеров**, немец Ф.А.Кекуле и англичанин А.Купер.

Рис. 5. Фридрих Велер
(1800–1882)


Рис. 6. Александр
Михайлович Бутлеров
(1828–1886)

Сущность созданной ими теории химического строения можно сформулировать в виде трех положений.
1. Атомы в молекулах соединены в определенном порядке согласно их валентности, причем углерод в органических соединениях четырехвалентен.
2. Свойства веществ определяются не только качественным и количественным элементным составом, но и порядком связи атомов в молекулах, т.е. химическим строением.
3. Атомы в молекулах оказывают друг на друга взаимное влияние, что отражается на свойствах веществ.
* Немецкий химик. Проводил исследования в области неорганической и органической химии. Установил существование явления изомерии, впервые осуществил синтез органического вещества (мочевины) из неорганического. Получил некоторые металлы (алюминий, бериллий и др.).
** Выдающийся русский химик, автор теории химического
строения органических веществ. На основании по
нятия о строении объяснил явление изомерии, предсказал существование изомеров ряда веществ и впервые их синтезировал. Первым осуществил синтез сахаристого вещества. Создатель школы русских хим иков, в которую входили В.В.Марковников, А.М.Зайцев, Е.Е.Вагнер, А.Е.Фаворский и др.

Сегодня кажется невероятным, что до середины XIX в., в период великих открытий в естествознании, ученые плохо представляли себе внутреннее устройство вещества. Именно Бутлеров ввел термин «химическое строение», подразумевая под ним систему химических связей между атомами в молекуле, их взаимное расположение в пространстве. Благодаря такому пониманию строения молекулы оказалось возможным объяснить явление изомерии, предсказать существование неизвестных изомеров, соотнести свойства веществ с их химическим строением. В качестве иллюстрации явления изомерии приведем формулы и свойства двух веществ – этилового спирта и диметилового эфира, имеющих одинаковый элементный состав С2Н6О, но различное химическое строение (табл. 2).
Таблица 2


Иллюстрация зависимости свойств вещества от его строения


Явление изомерии, очень широко распространенное в органической химии, является одной из причин многообразия органических веществ. Другая причина многообразия органических веществ заключается в уникальной способности атома углерода образовывать друг с другом химические связи, в результате чего получаются углеродные цепи
различной длины и строения: неразветвленные, разветвленные, замкнутые. Например, четыре атома углерода могут образовать такие цепи:


Если учесть, что между двумя атомами углерода могут существовать не только простые (одинарные) связи С–С, но также двойные С=С и тройные С≡С, то число вариантов углеродных цепей и, следовательно, различных органических веществ значительно увеличивается.
На теории химического строения Бутлерова основана и классификация органических веществ. В зависимости от того, атомы каких химических элементов входят в состав молекулы, все органичебольших групп: углеводороды, кислородсодержащие, азотсодержащие соединения.
Углеводородами называются органические соединения, состоящие только из атомов углерода и водорода.
По строению углеродной цепи, наличию или отсутствию в ней кратных связей все углеводороды делятся на несколько классов. Эти классы представлены на схеме 2.
Если углеводород не содержит кратных связей и цепь углеродных атомов не замкнута, он относится, как вы знаете, к классу предельных углеводородов, или алканов. Корень этого слова имеет арабское происхождение, а суффикс -ан присутствует в названиях всех углеводородов этого класса.
Схема 2


Классификация углеводородов


Наличие в молекуле углеводорода одной двойной связи позволяет отнести его к классу алкенов, причем его отношение к этой группе веществ подчеркивается
суффиксом -ен в названии. Простейшим алкеном является этилен, имеющий формулу CН2=СН2. Двойных связей С=С в молекуле может быть две, в этом случае вещество относится к классу алкадиенов.
Попытайтесь сами пояснить значение суффиксов -диен. Например, бутадиен-1,3 имеет структурную формулу: CН2=СН–CН=СН2.
Углеводороды с тройной углерод-углеродной связью в молекуле называют алкинами. На принадлежность к этому классу веществ указывает суффикс -ин. Родоначальником класса алкинов выступает ацетилен (этин), молекулярная формула которого С2Н2, а структурная – НС≡СН. Из соединений с замкнутой цепочкой углеродных
атомов важнейшими являются арены – особый класс углеводородов, название первого представителя которых вы наверняка слышали – это бензол С6Н6, структурная формула которого также известна каждому культурному человеку:


Как вы уже поняли, помимо углерода и водорода, в состав органических веществ могут входить атомы других элементов, в первую очередь кислорода и азота. Чаще всего атомы этих элементов в различных сочетаниях образуют группы, которые называют функциональными.
Функциональной группой называют группу атомов, определяющую наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.
Основные классы органических соединений, содержащих функциональные группы, представлены на схеме 3.
Схема 3
Основные классы органических веществ, содержащих функциональные группы


Функциональная группа –ОН называется гидроксильной и определяет принадлежность к одному из важнейших классов органических веществ – спиртам.
Названия спиртов образуются с помощью суффикса -ол. Например, наиболее известный представитель спиртов – это этиловый спирт, или этанол, С2Н5ОН.
Атом кислорода может быть связан с атомом углерода двойной химической связью. Группа >C=O называется карбонильной. Карбонильная группа входит в состав нескольких
функциональных групп, в том числе альдегидной и карбоксильной. Органические вещества, содержащие эти функциональные группы, называются, соответственно, альдегидами и карбоновыми кислотами. Наиболее известные представители альдегидов – это формальдегид НСОН и уксусный альдегид СН3СОН. С уксусной кислотой СН3СООН, раствор которой называется столовым уксусом, наверняка знаком каждый. Отличительным структурным признаком азотсодержащих органических соединений, и, в первую очередь, аминов и аминокислот является присутствие в их молекулах аминогруппы –NH2.
Приведенная классификация органических веществ также весьма относительна. Подобно тому, как в одной молекуле (например, алкадиенов) может содержаться две кратные связи, вещество может быть обладателем двух и даже более функциональных групп. Так, структурными единицами главных носителей жизни на земле – белковых молекул – являются аминокислоты. В молекулах этих веществ обязательно присутствуют как минимум две функциональные группы – карбоксильная иаминогруппа. Простейшая аминокислота называется глицин и имеет формулу:


Подобно амфотерным гидроксидам, аминокислоты сочетают в себе свойства кислот (за счет карбоксильной группы) и оснований (благодаря наличию в молекуле аминогруппы).
Для организации жизни на Земле амфотерные свойства аминокислот имеют особое значение – за счет взаимодействия аминогрупп и карбоксильных групп аминокис-
лоты соединяются в полимерные цепочки белков.
? 1. Назовите основные положения теории химического строения А.М.Бутлерова. Какую роль эта теория сыграла в развитии органической химии?
2. Какие классы углеводородов вам известны? По какому признаку проведена эта классификация?
3. Что называется функциональной группой органического соединения? Какие функциональные группы вы можете назвать? Какие классы органических соединений содержат названные функциональные группы? Запишите общие формулы классов соединений и формулы их представителей.
4. Дайте определение изомерии, запишите формулы возможных изомеров для соединений состава С4H10O. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
5. Отнесите вещества, формулы которых: С6Н6, С2Н6, С2Н4, НСООН, СН3ОН, С6Н12О6, к соответствующим классам органических соединений. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
6. Структурная формула глюкозы:К какому классу органических соединений вы отнесете это вещество? Почему его называют соединением с двойственной функцией?
7. Сравните органические и неорганические амфотерные соединения.
8. Почему аминокислоты относят к соединениям с двойственной функцией? Какую роль в организации жизни на Земле играет эта особенность строения аминокислот?
9. Приготовьте сообщение на тему «Аминокислоты – "кирпичики” жизни», используя возможности Интернета.
10. Приведите примеры относительности деления органических соединений на определенные классы. Проведите параллели подобной относительности для неорганических соединений.

Органическое вещество - это химическое соединение, в составе которого присутствует углерод. Исключения составляют только угольная кислота, карбиды, карбонаты, цианиды и оксиды углерода.

История

Сам термин «органические вещества» появился в обиходе ученых на этапе раннего развития химии. В то время господствовали виталистические мировоззрения. Это было продолжение традиций Аристотеля и Плиния. В этот период ученые мужи были заняты разделением мира на живое и неживое. При этом все без исключения вещества четко подразделялись на минеральные и органические. Считалось, что для синтеза соединений «живых» веществ необходима особая «сила». Она присуща всем живым существам, и без нее образовываться органические элементы не могут.

Это смешное для современной науки утверждение господствовало очень долго, пока в 1828 году Фридрих Велер опытным путем его не опроверг. Он смог из неорганического цианата аммония получить органическую мочевину. Это подтолкнуло химию вперед. Однако деление веществ на органические и неорганические сохранилось и в настоящем времени. Оно лежит в основе классификации. Известно почти 27 миллионов органических соединений.

Почему так много органических соединений?

Органическое вещество - это, за некоторым исключением, углеродное соединение. В действительности это очень любопытный элемент. Углерод способен образовывать из своих атомов цепочки. При этом очень важно, что связь между ними стабильна.

Кроме того, углерод в органических веществах проявляет валентность - IV. Из этого следует, что этот элемент способен образовывать с другими веществами связи не только одинарные, но и двойные и тройные. По мере возрастания их кратности, цепочка, состоящая из атомов, станет короче. При этом стабильность связи только увеличивается.

Также углерод имеет способность образовывать плоские, линейные и объемные структуры. Именно поэтому в природе так много разнообразных органических веществ.

Состав

Как было сказано выше, органическое вещество - это соединения углерода. И это очень важно. возникают при его связи практически с любым элементом периодической таблицы. В природе чаще всего в их состав (помимо углерода) входят кислород, водород, сера, азот и фосфор. Остальные элементы встречаются намного реже.

Свойства

Итак, органическим веществом является углеродное соединение. При этом существуют несколько важных критериев, которым оно должно соответствовать. Все вещества органического происхождения обладают общими свойствами:

1. Существующая между атомами различная типология связей непременно приводит к появлению изомеров. Прежде всего они образуются при соединении молекул углерода. Изомеры - это различные вещества, имеющие одну молекулярную массу и состав, но разные химико-физические свойства. Это явление называется изомерией.

2. Еще один критерий - явление гомологии. Это ряды органических соединений, в них формула соседних веществ отличается от предыдущих на одну группу СН 2 . Это важное свойство применяется в материаловедении.

Какие существуют классы органических веществ?

К органическим соединениям относят несколько классов. Они известны всем. липиды и углеводы. Эти группы можно назвать биологическими полимерами. Они участвуют в метаболизме на клеточном уровне в любом организме. Также в эту группу включают нуклеиновые кислоты. Так что можно сказать, что органическое вещество - это то, что мы ежедневно потребляем в пищу, то, из чего состоим.

Белки

Белки состоят из структурных компонентов - аминокислот. Это их мономеры. Белки также называют протеинами. Известно около 200 видов аминокислот. Все они встречаются в живых организмах. Но лишь двадцать из них являются составляющими белков. Их называют основными. Но в литературе также можно встретить и менее популярные термины - протеиногенные и белокобразующие аминокислоты. Формула органического вещества этого класса содержит аминные (-NH 2) и карбоксильные (-СООН) составляющие. Между собой они связанны все теми же углеродными связями.

Функции белков

Белки в организме растений и животных выполняют множество важных функций. Но главная из них - структурная. Белки являются основными компонентами клеточной мембраны и матрикса органелл в клетках. В нашем организме все стенки артерий, вен и капилляров, сухожилий и хрящей, ногтей и волос состоят преимущественно из разных белков.

Следующая функция - ферментативная. Белки выступают в качестве ферментов. Они катализируют протекание в организме химических реакций. Именно они отвечают за распад питательных компонентов в пищеварительном тракте. У растений ферменты фиксируют положение углерода во время фотосинтеза.

Некоторые переносят в организме различные вещества, например, кислород. Органическое вещество также способно присоединяться к ним. Так осуществляется транспортная функция. Белки разносят по кровеносным сосудам ионы металлов, жирные кислоты, гормоны и, конечно же, углекислый газ и гемоглобин. Транспорт происходит и на межклеточном уровне.

Белковые соединения - иммуноглобулины - отвечают за выполнение защитной функции. Это антитела крови. Например, тромбин и фибриноген активно участвуют в процессе свертываемости. Таким образом, они предотвращают большую кровопотерю.

Белки отвечают и за выполнение сократительной функции. Благодаря тому, что миозиновые и актиновые протофибриллы постоянно выполняют скользящие движения относительно друг друга, происходит сокращение мышечных волокон. Но и у одноклеточных организмов происходят подобные процессы. Движение жгутиков бактерий также напрямую связано со скольжением микротрубочек, которые имеют белковую природу.

Окисление органических веществ высвобождает большое количество энергии. Но, как правило, белки расходуются на энергетические нужды очень редко. Это происходит, когда исчерпаны все запасы. Лучше всего для этого подходят липиды и углеводы. Поэтому белки могут выполнять энергетическую функцию, но только при определенных условиях.

Липиды

Органическим веществом является и жироподобное соединение. Липиды принадлежат к простейшим биологическим молекулам. Они нерастворимы в воде, но при этом распадаются в неполярных растворах, таких как бензин, эфир и хлороформ. Они входят в состав всех живых клеток. В химическом отношении липиды - это спиртов и карбоновых кислот. Самые известные из них - жиры. В организме животных и растений эти вещества выполняют множество важных функций. Многие липиды используются в медицине и промышленности.

Функции липидов

Эти органические химические вещества вместе с белками в клетках образуют биологические мембраны. Но главная их функция - энергетическая. При окислении молекул жиров высвобождается огромное количество энергии. Она идет на образование в клетках АТФ. В форме липидов в организме может накапливаться значительное количество энергетических запасов. Порою их даже больше, чем нужно для осуществления нормальной жизнедеятельности. При патологических изменениях метаболизма «жирных» клеток становится больше. Хотя справедливости ради нужно заметить, что такие чрезмерные запасы просто необходимы животным, впадающим в спячку, и растениям. Многие полагают, что деревья и кустарники в холодный период питаются за счет почв. В действительности же они расходуют запасы масел и жиров, которые сделали за летний период.

В организме человека и животных жиры могут выполнять и защитную функцию. Они откладываются в подкожной клетчатке и вокруг таких органов, как почки и кишечник. Таким образом, они служат хорошей защитой от механических повреждений, то есть ударов.

Кроме этого, жиры обладают низким уровнем теплопроводности, что помогает сохранить тепло. Это очень важно, особенно в условиях холодного климата. У морских животных подкожный жировой слой еще и способствует хорошей плавучести. А вот у птиц липиды выполняют еще и водоотталкивающую и смазывающую функции. Воск покрывает их перья и делает их более эластичными. Такой же налет имеют на листьях некоторые виды растений.

Углеводы

Формула органического вещества C n (H 2 O) m указывает на принадлежность соединения к классу углеводов. Название этих молекул указывает на тот факт, что в них присутствует кислород и водород в том же количестве, что и вода. Кроме этих химических элементов, в соединениях может присутствовать, например, азот.

Углеводы в клетке являются основной группой органических соединений. Это первичные продукты Они представляют собой и исходные продукты синтеза в растениях других веществ, например, спиртов, органических кислот и аминокислот. Также углеводы входят в состав клеток животных и грибов. Обнаруживаются они и среди основных компонентов бактерий и простейших. Так, в животной клетке их от 1 до 2 %, а в растительной их количество может достигать 90 %.

На сегодняшний день выделяют всего три группы углеводов:

Простые сахара (моносахариды);

Олигосахариды, состоящие из нескольких молекул последовательно соединенных простых сахаров;

Полисахариды, в их состав входит более 10 молекул моносахаридов и их производных.

Функции углеводов

Все органические вещества в клетке выполняют определенные функции. Так, например, глюкоза - это основной энергетический источник. Она расщепляется в клетках всех происходит во время клеточного дыхания. Гликоген и крахмал составляют основной запас энергии, причем первое вещество у животных, а второе - у растений.

Углеводы выполняют и структурную функцию. Целлюлоза является основным компонентом клеточной стенки растений. А у членистоногих эту же функцию выполняет хитин. Также он обнаруживается в клетках высших грибов. Если брать в пример олигосахариды, то они входят в состав цитоплазматической мембраны - в виде гликолипидов и гликопротеинов. Также в клетках нередко выявляется гликокаликс. В синтезе нуклеиновых кислот участвуют пентозы. При включена в состав ДНК, а рибоза - в РНК. Также эти компоненты обнаруживаются и в коферментах, например, в ФАД, НАДФ и НАД.

Углеводы также способны выполнять в организме и защитную функцию. У животных вещество гепарин активно препятствует быстрому свертыванию крови. Он образуется во время повреждения ткани и блокирует образование тромбов в сосудах. Гепарин в большом количестве обнаруживается в тучных клетках в гранулах.

Нуклеиновые кислоты

Белки, углеводы и липиды - это не все известные классы органических веществ. Химия относит сюда еще и нуклеиновые кислоты. Это фосфорсодержащие биополимеры. Они, находясь в клеточном ядре и цитоплазме всех живых существ, обеспечивают передачу и хранение генетических данных. Эти вещества были открыты благодаря биохимику Ф. Мишеру, который занимался изучением сперматозоидов лосося. Это было «случайное» открытие. Немного позднее РНК и ДНК были обнаружены и во всех растительных и животных организмах. Также были выделены нуклеиновые кислоты в клетках грибов и бактерий, а также вирусов.

Всего в природе обнаружено два вида нуклеокислот - рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Различие понятно из названия. дезоксирибоза - пятиуглеродный сахар. А в молекуле РНК обнаруживается рибоза.

Изучением нуклеиновых кислот занимается органическая химия. Темы для исследования диктует также медицина. В кодах ДНК скрывается множество генетических болезней, обнаружить которые ученым еще только предстоит.

Существует несколько определений, что такое органические вещества, чем они отличаются от другой группы соединений — неорганических. Одно из наиболее распространенных объяснений вытекает из названия «углеводороды». Действительно, в основе всех органических молекул находятся цепочки атомов углерода, связанные с водородом. Присутствуют и другие элементы, получившие наименование «органогенные».

Органическая химия до открытия мочевины

Издавна люди пользуются многими природнымие веществами и минералами: серой, золотом, железной и медной рудой, поваренной солью. За все время существования науки — с древнейших времен и до первой половины XIX века — ученые не могли доказать связь живой и неживой природы на уровне микроскопического строения (атомов, молекул). Считалось, что своим появлением органические вещества обязаны мифической жизненной силе — витализму. Бытовал миф о возможности вырастить человечка «гомункулуса». Для этого надо было сложить в бочонок разные продукты жизнедеятельности, подождать определенное время, пока зародится жизненная сила.

Сокрушительный удар по витализму нанесли работы Веллера, который синтезировал органическое вещество мочевину из неорганических компонентов. Так было доказано, что никакой жизненной силы нет, природа едина, организмы и неорганические соединения образованы атомами одних и тех же элементов. Состав мочевины был известен и до работ Веллера, изучение этого соединения не составляло в те годы большого труда. Замечательным был сам факт получения вещества, характерного для обмена веществ, вне тела животного или человека.

Теория А. М. Бутлерова

Велика роль русской школы химиков в становлении науки, изучающей органические вещества. С именами Бутлерова, Марковникова, Зелинского, Лебедева связаны целые эпохи в развитии органического синтеза. Основоположником теории строения соединений является А. М. Бутлеров. Знаменитый ученый-химик в 60-х годах XIX века объяснил состав органических веществ, причины многообразия их строения, вскрыл взаимосвязь, существующую между составом, строением и свойствами веществ.

На основе выводов Бутлерова удалось не только систематизировать знания об уже существующих органических соединениях. Появилась возможность предсказать свойства еще не известных науке веществ, создать технологические схемы для их получения в промышленных условиях. В полной мере воплощаются в жизнь многие идеи ведущих химиков-органиков в наши дни.

При окислении углеводородов получаются новые органические вещества — представители других классов (альдегидов, кетонов, спиртов, карбоновых кислот). Например, большие объемы ацетилена идут на производство уксусной кислоты. Часть этого продукта реакции в дальнейшем расходуется для получения синтетических волокон. Раствор кислоты (9% и 6%) есть в каждом доме — это обычный уксус. Окисление органических веществ служит основой для получения очень большого числа соединений, имеющих промышленное, сельскохозяйственное, медицинское значение.

Ароматические углеводороды

Ароматичность в молекулах органических веществ — это присутствие одного или нескольких бензольных ядер. Цепочка из 6 атомов углерода замыкается в кольцо, в нем возникает сопряженная связь, поэтому свойства таких углеводородов не похожи на другие УВ.

Ароматические углеводороды (или арены) имеют огромное практическое значение. Широко применяются многие из них: бензол, толуол, ксилол. Они используются как растворители и сырье для производства лекарств, красителей, каучука, резины и других продуктов органического синтеза.

Кислородосодержащие соединения

В составе большой группы органических веществ присутствуют атомы кислорода. Они входят в наиболее активную часть молекулы, ее функциональную группу. Спирты содержат одну или несколько гидроксильных частиц —ОН. Примеры спиртов: метанол, этанол, глицерин. В карбоновых кислотах присутствует другая функциональная частица — карбоксил (—СОООН).

Другие кислородосодержащие органические соединения — альдегиды и кетоны. Карбоновые кислоты, спирты и альдегиды в больших количествах присутсвуют в составе разных органов растений. Они могут быть источниками для получения натуральных продуктов (уксусной кислоты, этилового спирта, ментола).

Жиры являются соединениями карбоновых кислот и трехатомного спирта глицерина. Кроме спиртов и кислот линейного строения, есть органические соединения с бензольным кольцом и функциональной группой. Примеры ароматических спиртов: фенол, толуол.

Углеводы

Важнейшие органические вещества организма, входящие в состав клеток, — белки, ферменты, нуклеиновые кислоты, углеводы и жиры (липиды). Простые углеводы — моносахариды — встречаются в клетках в виде рибозы, дезоксирибозы, фруктозы и глюкозы. Последний в этом коротком списке углевод — основное вещество обмена веществ в клетках. Рибоза и дезоксирибоза — составные части рибонуклеиновой и дезоксирибонуклеиновой кислот (РНК и ДНК).

При расщеплении молекул глюкозы выделяется энергия, необходимая для жизнедеятельности. Сначала она запасается при образовании своеобразного переонсчика энергии — аденозинтрифосфорной кислоты (АТФ). Это вещество переносится кровью, доставляется в ткани и клетки. При последовательном отщеплении от аденозина трех остатков фосфорной кислоты энергия освобождатеся.

Жиры

Липиды — вещества живых организмов, обладающие специфическими свойствами. Они не растворяются в воде, являются гидрофобными частицами. Особенно богаты веществами этого класса семена и плоды некоторых растений, нервная ткань, печень, почки, кровь животных и человека.

Кожа человека и животных содержит множество мелких сальных желез. Выделяемый ими секрет выводится на поверхность тела, смазывает ее, защищает от потери влаги и проникновения микробов. Слой подкожной жировой клетчатки оберегает от повреждений внутренние органы, служит запасным веществом.

Белки

Протеины составляют более половины всех органических веществ клетки, в некоторых тканях их содержание доходит до 80%. Для всех видов белков характерные высокие молекулярные массы, наличие первичной, вторичной, третичной и четвертичной структур. При нагревании они разрушаются — происходит денатурация. Первичная структура — это огромная для микромира цепочка аминокислот. Под действием особых ферментов в пищеварительной системе животных и человека протеиновая макромолекула распадется на составные части. Они попадают в клетки, где происходит синтез органических веществ — других белков, специфичных для каждого живого существа.

Ферменты и их роль

Реакции в клетке протекают со скоростью, которая в производственных условиях трудно достижима, благодаря катализаторам — ферментам. Различают ферменты, действующие только на белки, — липазы. Гидролиз крахмала происходит с участием амилазы. Для разложения на составные части жиров необходимы липазы. Процессы с участием ферментов идут вов всех живых организмах. Если у человека нет в клетках какого-либо фермента, то это сказывается на обмене веществ, в целом на здоровье.

Нуклеиновые кислоты

Вещества, впервые обнаруженные и выделенные из ядер клеток, выполняют функцию передачи наследственных признаков. Основное количество ДНК содержится в хромосомах, а молекулы РНК расположены в цитоплазме. При редупликации (удвоении) ДНК появляется возможность передать наследственную информацию половым клеткам — гаметам. При их слиянии новый организм получает генетический материал от родителей.

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и Вторые всегда происходят из минералов - неживых которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.