Ультрафиолетовые, инфракрасные и видимые лучи света. Их воздействие на рептилий и земноводных. Инфракрасное и ультрафиолетовое излучение

Ультрафиолетовое излучение относится к невидимому оптическому спектру. Естественным источником ультрафиолетового излучения является солнце, на которое приходится приблизительно 5% плотности потока солнечного излучения, - это жизненно необ­ходимый фактор, оказывающий благотворное стимулирующее дей­ствие на живой организм.

Искусственные источники ультрафиолетового излучения (элек­трическая дуга при электросварке, электроплавке, плазмотроны и др.) могут стать причиной поражений кожи и зрения. Острые поражения глаз (электроофтальмия) представ­ляют собой острый конъюнктивит. За­болевание проявляется ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением. К хроническим заболевани­ям относят хронический конъюнктивит, катаракту. Кожные поражения протекают в форме острых дерматитов, иногда с образованием отеков и пузырей. Могут возник­нуть общетоксические явления с повышением температуры, ознобом, головными болями. На коже после интенсивного облучения развиваются гиперпигментация и шелушение. Длительное воздействие ультрафиолетового излучения приводит к «старению» кожи, вероятности развития злокачественных новообразований.

Гигиеническое нормированиеультрафиолетового излучения осуществляется по СН 4557-88, которые устанавливают допустимые плотности потока излучения в зависимости от длины волн при условии защиты органов зрения и кожи.



Допустимая интенсивность облучения работающих при
незащищенных участках поверхности кожи не более 0,2 м 2 (лицо,
шея, кисти рук) общей продолжительностью воздействия излучения 50% рабочей смены и длительности однократного облучения
свыше 5 мин не должно превышать 10 Вт/м 2 для области 400-280 нм и
0,01 Вт/м 2 - для области 315-280 нм.

При использовании специальной одежды и средств защиты лица
и рук, не пропускающих излучение, допустимая интенсивность
облучения не должна превышать 1 Вт/м 2 .

К основным методам защитыот ультрафиолетового излучения относят экраны, средства индивидуальной защиты (одежда, очки), защитные кремы.

Инфракрасное излучение представляет собой невидимую часть оптического электромагнитного спектра, энергия которого при поглощении в биологической ткани вызывает тепловой эффект. Источникими инфракрасного излучения могут быть плавильные печи, расплавленный металл, нагретые детали и заготовки, различные виды сварки и др.

Наиболее поражаемые органы: кожный покров и органы зре­ния. При остром облучении кожи возможны ожоги, резкое расши­рение капилляров, усиление пигментации кожи; при хронических облучениях изменение пигментации может быть стойким, напри­мер эритемоподобный (красный) цвет лица у рабочих-стеклоду­вов, сталеваров.

При воздействии на зрение могут отмечаться помутнение и ожог роговицы, инфракрасная катаракта.

Инфракрасное излучение воздействует также на обменные процессы в миокарде, водно-электролитный баланс, на состояние верхних дыхательных путей (развитие хронического ларингита, ринита, синуситов), может быть причиной теплового удара.

Нормирование инфракрасного излученияосуществляется по интенсивности допустимых интегральных потоков излучения с учетом спектраль­ного состава, размера облучаемой площади, защитных свойств спецодежды для продолжительности действия в соответствии с ГОСТ 12.1.005-88 и Санитарными правилами и нормами СН 2.2.4.548-96 «Гигиенические требования к микро­климату Производственных помещений».

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м 2 при облучении 50% поверхности тела и более, 70 Вт/м 2 - при величине облучаемой поверхности от 25 до 50% и 100 Вт/м 2 - при облучении не более 25% поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, “открытое” пламя и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Допустимая интенсивность облучения на постоянных и непостоянных местах дана в табл. 4.20.

Таблица 4.20.

Допустимая интенсивность облучения

Основные мероприятия по снижению опасности воздействия инфракрасного излучения на человека включают в себя: снижение интенсивности излучения источника; технические защитные средства; защита временем, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.

Технические защитные средства подразделяются на ограждающие, теплоотражающие, теплоотводящие и теплоизолирующие экраны; герметизацию оборудования; средства вентиляции; средства автоматического дистанционного управления и контроля; сигнализацию.

При защите временем во избежание чрезмерного общего перегревания и локального повреждения (ожог) регламентируется продолжительность периодов непрерывного инфракрасного облучения человека и пауз между ними (табл. 4.21. по Р 2.2.755-99).

Таблица 4.21.

Зависимость непрерывного облучения от его интенсивности.

Вопросы к 4.4.3.

  1. Охарактеризуйте природные источники электромагнитного поля.
  2. Дайте классификацию антропогенных электромагнитных полей.

3. Расскажите о действие электромагнитного поля на человека.

4. Что такое нормирование электромагнитных полей.

5. Какие установлены допустимые уровни воздействия электромагнитных полей на рабочих местах.

6. Перечислите основные мероприятия по защите работающих от неблагоприятного влияния электромагнитных полей.

7. Какие экраны применяются для защиты от электромагнитных полей.

8. Какие применяются индивидуальные средства защиты и как определяется их эффективность.

9. Охарактеризуйте виды ионизирующего излучения.

10. Какие дозы характеризуют воздействие ионизирующего излучения.

11. Каково действие ионизирующего излучения на человека.

12. Что такое нормирование ионизирующего излучения.

13. Расскажите порядок обеспечениябезопасности при работе с ионизирующими излучениями.

14. Дайте понятие лазерного излучения.

15. Охарактеризуйте его воздействие на человека и методы защиты.

16. Дайте понятие ультрафиолетового излучения, его действия на человека и методов защиты.

17. Дайте понятие инфракрасного излучения, его действия на человека и методов защиты.

Значительную часть неионизирующих электромагнитных излучений составляют радиоволны и колебания оптического диапазона (инфракрасное, видимое, ультрафиолетовое излучение). В зависимости от места и условий воздействия электромагнитных излучений радиочастот различают четыре вида облучения: профессиональное, непрофессиональное, бытовое и в лечебных целях, а по характеру облучения – общее и местное.

Инфракрасное излучение – часть электромагнитного с длиной волны от 780 до 1000 мкм, энергия которого при поглощении веществом вызывает тепловой эффект. Наиболее активно коротковолновое излучение, так как оно обладает наибольшей энергией фотонов, способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. У человека наиболее поражаемые инфракрасным излучением органы – кожный покров и органы зрения.

Видимое излучение при высоких уровнях энергии также может представлять опасность для кожи и глаз.

Ультрафиолетовое излучение, как и инфракрасное, является частью электромагнитного с длиной волны от 200 до 400 нм. Естественные солнечные ультрафиолетовые излучения являются жизненно необходимыми, оказывают благотворное стимулирующее действие на организм.

Излучение искусственных источников может стать причиной острых и хронических профессиональных поражений. Наиболее уязвимым органом являются глаза. Острые поражения глаз называются электроофтальмией. Попадая на кожу, ультрафиолетовые излучения могут вызывать острые воспаления, отек кожи. Может подняться температура, появиться озноб, головная боль.

Лазерное излучение представляет собой особый вид электромагнитных излучений, генерируемых в диапазоне волн 0,1-1000 мкм. Отличается от других видов излучений монохроматичностью (строго одной длины волны), когерентностью (все источники излучения испускают электромагнитные волны в одной фазе) и острой направленностью луча. Действует на различные органы избирательно. Локальное повреждение связано с облучением глаз, повреждением кожи. Общее воздействие может приводить к различным функциональным нарушениям организма человека (нервной и сердечно-сосудистой систем, артериального давления и др.)

2.Коллективные средства защиты (виды, способы применения)

Защита населения и производительных сил страны от оружия массового поражения, а также при стихийных бедствиях, производственных авариях – важнейшая задача Управления по делам гражданской обороны и чрезвычайным ситуациям.

Средства коллективной защиты - средства защиты, конструктивно и функционально связанные с производственным процессом, производственным оборудованием, помещением, зданием, сооружением, производственной площадкой.

Коллективные средства защиты делятся на: оградительные, предохранительные, тормозные устройства, устройства автоматического контроля и сигнализации, дистанционного управления, знаки безопасности.

Оградительные устройства предназначены для предотвращения случайного попадания человека в опасную зону. Эти устройства применяются для изоляции движущихся частей машин, зон обработки станков, прессов, ударных элементов машин от рабочей зоны. Устройства подразделяются на стационарные, подвижные и переносные. Они могут быть выполнены в виде защитных кожухов, козырьков, барьеров, экранов; как сплошными, так и сетчатыми. Изготавливают их из металла, пластмасс, дерева.

Стационарные ограждения должны быть достаточно прочными и выдерживать любые нагрузки, возникающие от разрушающих действий предметов и срыва обрабатываемых деталей и т.д. Переносные ограждения в большинстве случаев используют как временные.

Предохранительные устройства используют для автоматического отключения машин и оборудования при отклонении от нормального режима работы или при попадании человека в опасную зону. Эти устройства могут быть блокирующими и ограничительными. Блокирующие устройства по принципу действия бывают: электромеханические, фотоэлектрические, электромагнитные, радиационные, механические. Ограничительные устройства являются составными частями машин и механизмов, которые разрушаются или выходят из строя при перегрузках.

Широко используются тормозные устройства, которые можно подразделить на колодочные, дисковые, конические и клиновые. В большинстве видов производственного оборудования используют колодочные и дисковые тормоза. Тормозные системы могут быть ручные, ножные, полуавтоматические и автоматические.

Для обеспечения безопасной и надежной работы оборудования информационные, предупреждающие, аварийные устройства автоматического контроля и сигнализации очень важны. Устройства контроля – это приборы для измерения давлений, температуры, статических и динамических нагрузок, характеризующих работу машин и оборудования. При объединении устройств контроля с системами сигнализации значительно повышается их эффективность. Системы сигнализации бывают: звуковыми, световыми, цветовыми, знаковыми, комбинированными.

Для защиты от поражения электрическим током применяются различные технические меры. Это – малые напряжения; электрическое разделение сети; контроль и профилактика повреждения изоляции; защита от случайного прикосновения к токоведущим частям; защитное заземление; защитное отключение; индивидуальные средства защиты.

Солнце – мощный источник тепла и света. Без него не может быть жизни на планете. От солнца исходят лучи, которые не видны невооруженным глазом. Узнаем, какие свойства имеет ультрафиолетовое излучение, его влиянии на организм и возможном вреде.

Солнечный спектр имеет инфракрасную, видимую и ультрафиолетовую части. УФ оказывает и положительное, и отрицательное действие на человека. Его используют в разных сферах жизнедеятельности. Широкое применение отмечается в медицине, ультрафиолетовое излучение имеет свойство изменять биологическую структуру клеток, оказывая воздействие на организм.

Источники облучения

Главный источник ультрафиолетовых лучей – солнце. Также их получают при помощи специальных лампочек:

  1. Ртутно-кварцевые высокого давления.
  2. Витальные люминесцентные.
  3. Озонные и кварцевые бактерицидные.

В настоящее время человечеству известны лишь некоторые виды бактерий, способные существовать без ультрафиолета. Для остальных живых клеток его отсутствие приведет к смерти.

Какого же влияние ультрафиолетового излучения на организм человека?

Положительное действие

На сегодняшний день УФ широко используется в медицине. Он обладает успокаивающим, болеутоляющим, антирахитическим и антиспастическим воздействием. Положительное влияние ультрафиолетовых лучей на организм человека:

  • поступление витамина D, он нужен для усвоения кальция;
  • улучшение обмена веществ, так как активизируются ферменты;
  • снижение нервного перенапряжения;
  • повышение выработки эндорфинов;
  • расширение сосудов и нормализация циркуляции крови;
  • ускорение регенерации.

Ультрафиолет для человека полезен также тем, что он воздействует на иммунобиологическую активность, способствует активизации защитных функций организма против различных инфекций. В определенной концентрации излучение вызывает выработку антител, влияющих на возбудителей заболеваний.

Отрицательное влияние

Вред ультрафиолетовой лампы на организм человека часто превышает его полезные свойства. Если ее использование в лечебных целях выполнено неправильно, не были соблюдены меры безопасности, возможна передозировка, характеризующаяся следующими симптомами:

  1. Слабость.
  2. Апатия.
  3. Снижение аппетита.
  4. Проблемы с памятью.
  5. Учащенное сердцебиение.

Продолжительное пребывание на солнце вредно для кожи, глаз и иммунитета. Последствия чрезмерного загара, такие как ожоги, дерматические и аллергические высыпания исчезают через несколько суток. Ультрафиолетовая радиация медленно скапливается в организме и становится причиной опасных заболеваний.

Воздействие УФ на кожу может стать причиной эритемы. Сосуды расширяются, что характеризуется гиперемией и отеком. Накапливающиеся на теле гистамин и витамин D попадают в кровь, это способствует изменениям в организме.

Стадия развития эритемы зависит от:

  • диапазона УФ-лучей;
  • дозы излучения;
  • индивидуальной чувствительности.

Чрезмерное облучение вызывает на коже ожог с образованием пузыря и последующим схождением эпителия.

Но вред ультрафиолета не ограничивается ожогами, его нерациональное применение может спровоцировать патологические изменения в организме.

Действие УФ на кожу

К красивому загорелому телу стремится большинство девушек. Однако кожа приобретает темный цвет под действием меланина, так организм защищается от дальнейшего излучения. Но он не убережет от более серьезного воздействия облучения:

  1. Фотосенсибилизация – высокая чувствительность к ультрафиолету. Минимальное его действие может спровоцировать жжение, зуд или ожог. Это в основном связано с применением лекарственных препаратов, косметических средств либо определенных продуктов питания.
  2. Старение – УФ-лучи проходят в глубокие слои кожи, разрушают коллагеновые волокна, теряется эластичность и появляются морщины.
  3. Меланома – это рак кожи, который образуется в результате частого и продолжительного пребывания на солнце. Чрезмерная доза ультрафиолета вызывает развитие злокачественных новообразований на теле.
  4. Базальноклеточная и чешуйчатая карцинома – это раковое образование на теле, при котором необходимо устранение пораженных участков хирургическим путем. Часто данный недуг встречается у людей, работа которых предполагает долгое пребывание на солнце.

Любой кожный дерматит, вызванный УФ-лучами может стать причиной образования онкологических заболеваний кожи.

Влияние УФ на глаза

Ультрафиолет также может отрицательно воздействовать на глаза. В результате его влияния возможно развитие следующих заболеваний:

  • Фотоофтальмия и электроофтальмия. Характеризуется краснотой и припухлостью глаз, слезотечением, светобоязнью. Появляется у тех, кто часто находятся на ярком солнце в снежную погоду без солнцезащитных очков или у сварщиков, не соблюдающих правила безопасности.
  • Катаракта – помутнение хрусталика. Это заболевание в основном появляется к старости. Оно развивается в результате действия солнечных лучей на глаза, которое накапливается на протяжении жизни.
  • Птеригиум – разрастание конъюнктивы глаза.

Также возможны некоторые виды раковых образований на глазах и веках.

Как действует УФ на иммунную систему?

Как влияет облучение на иммунитет? В определенной дозе УФ-лучи повышают защитные функции организма, но их чрезмерное действие ослабляет иммунную систему.

Радиация излучения изменяет защитные клетки, и они теряют свою способность бороться с различными вирусами, раковыми клетками.

Защита кожи

Чтобы защититься от солнечных лучей, необходимо следовать определенным правилам:

  1. Находиться на открытом солнце нужно умеренно, небольшой загар оказывает фотозащитный эффект.
  2. Необходимо обогатить рацион питания антиоксидантами и витаминами C и E.
  3. Следует всегда пользоваться солнцезащитным кремом. При этом нужно выбирать средство с высоким уровнем защиты.
  4. Использовать ультрафиолет в лечебных целях разрешается исключительно под контролем специалиста.
  5. Тем, кто работает с источниками УФ, рекомендуется защищать себя маской. Это нужно при применении бактерицидной лампы, которая опасна для глаз.
  6. Любителям ровного загара, не следует слишком часто посещать солярий.

Чтобы защитить себя от излучения также можно использовать специальную одежду.

Противопоказания

Противопоказано подвергаться ультрафиолету следующим людям:

  • тем, кто имеет слишком светлую и чувствительную кожу;
  • при активной форме туберкулеза;
  • детям;
  • при острых воспалительных или онкологических заболеваниях;
  • альбиносам;
  • во время II и III стадии гипертонической болезни;
  • при большом количестве родинок;
  • тем, кто страдает системными или гинекологическими недугами;
  • при продолжительном приеме определенных лекарственных препаратов;
  • при наследственной предрасположенности к онкологическим заболеваниям кожи.

Инфракрасное излучение

Еще одна часть солнечного спектра – инфракрасное излучение, оказывающее тепловое действие. Оно используется в современной сауне.

– это маленькое деревянное помещение со встроенными инфракрасными излучателями. Под действием их волн прогревается человеческое тело.

Воздух в инфракрасной сауне не повышается свыше 60 градусов. Однако лучи прогревают тело до 4 см, когда в традиционной бане тепло проникает всего на 5 мм.

Это происходит, так как длина инфракрасных волн имеет ту же длину, что и тепловые волны, идущие от человека. Организм принимает их как свои и не сопротивляется проникновению. Температура человеческого тела поднимается до 38,5 градусов. Благодаря этому погибают вирусы и опасные микроорганизмы. Инфракрасная сауна оказывает лечебное, омолаживающее, и профилактическое действие. Она показана для любого возраста.

Перед посещением такой сауны необходимо проконсультироваться со специалистом, а также следовать технике безопасности нахождения в помещении с инфракрасными излучателями.

Видео: ультрафиолет.

УФ в медицине

В медицине существует термин «ультрафиолетовое голодание». Это происходит, когда организму не хватает солнечного света. Чтобы от этого не возникало никаких патологий, применяют искусственные источники ультрафиолета. Они помогают бороться с зимней нехваткой витамина D и поднять иммунитет.

Также такое излучение используется при лечении суставов, аллергических и дерматологических болезней.

К тому же УФ обладает следующими лечебными свойствами:

  1. Нормализует работу щитовидной железы.
  2. Улучшает функцию дыхательной и эндокринной систем.
  3. Повышает гемоглобин.
  4. Дезинфицирует помещение и медицинские инструменты.
  5. Снижает уровень сахара.
  6. Помогает при лечении гнойных ран.

Необходимо учитывать, что ультрафиолетовая лампа – это не всегда польза, возможен и большой вред.

Чтобы УФ-излучение оказывало полезный эффект на организм, следует использовать его правильно, соблюдать технику безопасности и не превышать время пребывания на солнце. Чрезмерное превышение дозы облучения опасно для здоровья и жизни человека.

Что такое свет?

Солнечный свет проникает в верхние слои атмосферы мощностью около одного киловатта на квадратный метр. Все жизненные процессы на нашей планете приводятся в движение благодаря этой энергии. Свет - это электромагнитное излучение, его природа основана на электромагнитных полях, которые называются фотонами. Фотоны света характеризуются различными уровнями энергии и длиной волн, выражаемой в нанометрах (нм). Самые известные длины волн - видимые. Каждая длина волны представлена определенным цветом. Например, Солнце желтого цвета, потому что наиболее мощные излучения в видимом диапазоне спектра именно желтые.

Однако существуют и другие волны за пределами видимого света. Все они называются электромагнитным спектром. Самая мощная часть спектра - это гамма-лучи, далее следуют рентгеновские лучи, ультрафиолетовый свет, и только потом видимый свет, занимающий малую долю электромагнитного спектра и располагающийся между ультрафиолетовым и инфракрасным светом. Всем известен инфракрасный свет, как тепловое излучение. Спектр включает в себя микроволны и заканчивается радиоволнами, более слабыми фотонами. Для животных наибольшее полезное значение несут ультрафиолетовый, видимый и инфракрасный свет.

Видимый свет.

Помимо обеспечения привычного для нас освещения, свет несет еще и немаловажную функцию регуляция продолжительности светового дня. Видимый спектр света находится в диапазоне от 390 до 700 нм. Именно он фиксируется глазом, а цвет зависит от длины волны. Индекс цветопередачи (CRI) показывает способность какого-либо источника света освещать объект, по сравнению с естественным солнечным светом принятым за 100 CRI. Искусственные источники света со значением CRI более 95 считаются светом полного спектра, способные освещать объекты так же, как и естественное освещение. Также важная характеристика для определения цвета излучаемого света - это цветовая температура, измеряемая в Кельвинах (К).

Чем выше показатель цветовой температуры, тем насыщеннее голубой оттенок (7000К и выше). При низких значениях цветовой температуры свет имеет желтоватый оттенок, как например у бытовых ламп накаливания (2400К).

Среднее значение температуры дневного света составляет около 5600К, оно может варьировать от минимального показателя 2000К на закате до 18000К при пасмурной погоде. Для максимального приближения условий содержания животных к естественным, необходимо размещать в вольерах лампы с максимальным индексом цветопередачи CRI и цветовой температурой около 6000К. Тропические растения необходимо обеспечивать световыми волнами в диапазоне, используемом для фотосинтеза. Во время этого процесса растения используют энергию света для производства сахаров, “натурального топлива” для всех живых организмов. Освещение в диапазоне 400-450 нм способствует росту и размножению растений.

Ультрафиолетовое излучение

Ультрафиолетовый свет или УФ-излучение занимает большую долю в электромагнитном излучении и находится на границе с видимым светом.

Ультрафиолетовое излучение разделяют на 3 группы в зависимости от длины волн:

  • . UVA- длинноволновой ультрафиолет А, диапазон от 290 до 320 нм, имеет важное значение для рептилий.
  • . UVB - средневолновой ультрафиолет B, диапазон от 290 до 320 нм, имеет наиболее существенное значение для рептилий.
  • . UVC - коротковолновой ультрафиолет C, диапазон от 180 до 290 нм, является опасным для всех живых организмов (ультрафиолетовая стерилизация).

Было доказано, что ультрафиолет А (UVA) влияет на аппетит, окрас, поведение и репродуктивную функцию животных. Рептилии и амфибии видят в диапазоне UVA (320- 400 нм), поэтому именно он влияет на то, как они воспринимают окружающий мир. Под воздействием этого излучения цвет еды или другого животного будут выглядеть иначе, чем воспринимает глаз человека. Подача сигналов при помощи частей тела (например, Anolis sp.) или изменение цвета покровов (например, Chameleon sp) распространено повсеместно среди рептилий и земноводных, и если UVA-излучение отсутствует, то эти сигналы могут восприниматься животными не корректно. Наличие ультрафиолета А играет важную роль при содержании и разведении животных.

Ультрафиолет B находится в диапазоне волн 290-320 нм. В естественных условиях рептилии синтезируют витамин D3 под воздействием солнечных лучей UVB-спектра. В свою очередь, витамин D3 необходим для усвоения животными кальция. На кожных покровах UVB вступает в реакцию с предшественником витамина D, 7-дегидрохолестеролом. Под влиянием температуры и специальных механизмов кожи, провитамин D3 превращается в витамин D3. Печень и почки преобразуют витамин D3 в его активную форму, гормон (1,25-дигидрокиси витамин D), которые регулирует кальциевый обмен.

Хищные и всеядные пресмыкающиеся получают большое количество необходимого витамина D3 из пищи. Растительная пища не содержит D3 (холекальцеферол), а содержит D2 (эргокальцеферол), который менее эффективен в метаболизме кальция. Именно по этой причине растительноядные пресмыкающиеся сильнее зависят от качества освещения, чем плотоядные.

Нехватка витамина D3 достаточно быстро приводит к нарушению обмена веществ в костных тканях животных. При подобных нарушениях метаболизма патологические изменения могут отразиться не только на костных тканях, но и на других системах органов. Внешними проявлениями нарушений могут быть отеки, вялость, отказ от пищи, неправильно развитие костей и панциря у черепах. При обнаружении подобных симптомов, необходимо обеспечить животное не только источником UVB-излучения, но и добавить в рацион корма или добавки с кальцием. Но не только молодые животные подвержены подобным нарушениям при неправильном содержании, взрослые особи и яйцекладущие самки также подвергаются серьезному риску при отсутствии UVB-излучения.

Инфракрасный свет

Природная эктотермия рептилий и земноводных (холоднокровность) подчеркивает важность инфракрасного излучения (тепла) для терморегуляции. Диапазон инфракрасного спектра находится в сегменте не видимым человеческим глазом, но отчетливо ощущаемом теплом на коже. Солнце излучает большую часть своей энергии в инфракрасной части спектра. Для рептилий, активных преимущественно в светлое время суток, лучшим источников терморегуляции являются специальные греющие лампы, излучающие большое количество инфракрасного света (+700 нм).

Интенсивность освещения

Климат Земли определяется количеством солнечной энергии, попадающей на ее поверхность. На интенсивность освещения влияют множество факторов, такие как озоновый слой, географическое положение, облака, влажность воздуха, высота расположения относительно уровня моря. Количество света, падающего на поверхность, называется освещенностью и измеряется в люменах на квадратный метр или люксах (lux). Освещенность под прямыми солнечными лучами составляет около 100 000 lux. Обычно дневная освещенность, проходя через облака, колеблется от 5 000 до 10 000 lux, ночью от Луны она составляет всего лишь 0,23 lux. Густая растительность в тропических лесах также влияет на эти значения.

Ультрафиолетовое излучение измеряется в микроваттах на квадратный сантиметр (µW/sm2). Его количество сильно отличается на разных полюсах, увеличиваясь при приближении к экватору. Количество UVB-излучения в полдень на экваторе составляет примерно 270 µW/sm2.Это значение уменьшается с заходом Солнца, и также увеличивается с рассветом. Животные в естественной среде обитания принимают солнечные ванны преимущественно с утра и на закате, остальную часть времени они проводят в своих убежищах, норах или в корне деревьев. В тропических лесах лишь малая часть прямых солнечных лучей может проникнуть сквозь густую растительность в нижние слои, достигнув поверхности земли.

Уровень ультрафиолетового излучения и света, в среде обитания рептилий и амфибий, может изменяться в зависимости от целого ряда факторов:

Среда обитания:

В зонах тропических лесов тени значительно больше, чем в пустыне. В густых лесах значение УФ-излучения имеет широкий диапазон, на верхние ярусы леса попадает значительно больше прямых солнечных лучей, чем на лесную почву. В пустынных и степных зонах практически нет естественных укрытий от прямых солнечных лучей, также эффект излучения может быть усилен за счет отражения от поверхности. В горной местности есть долины, куда солнечный свет может проникать лишь на несколько часов в сутки.

Проявляя большую активность в течение светового дня, дневные животные получают больше УФ-облучения, чем ночные виды. Но даже они не проводят весь день под прямыми солнечными лучами Солнца. Многие виды прячутся в укрытиях в самое жаркое время дня. Прием солнечных ванн ограничивается ранним утром и вечером. В различных климатических поясах дневные циклы активности у рептилий могут отличаться. Некоторые виды ночных животных выходят погреться на солнце днем с целью терморегуляции.

Широта:

Наибольшей интенсивность ультрафиолетовое излучение обладает на экваторе, где Солнце располагается на наименьшем расстоянии от поверхности Земли, и его лучи проходят минимальное расстояние сквозь атмосферу. Толщина озонового слоя в тропиках по естественным причинам тоньше, чем в средних широтах, поэтому озоном поглощается меньше УФ-излучения. Полярные широты более удалены от Солнца, и немногочисленные ультрафиолетовые лучи вынуждены проходить через богатые озоном слои с большими потерями.

Высота над уровнем моря:

Интенсивность УФ-излучения увеличивается с высотой, поскольку уменьшается толщина атмосферы, поглощающей солнечные лучи.

Погодные условия:

Облака играют серьезную роль фильтра для лучей ультрафиолета, направляющихся к поверхности Земли. В зависимости от толщины и формы они способны поглощать до 35 - 85 % энергии солнечных излучений. Но, даже покрывая полностью небо, облака не перекроют доступ лучей к поверхности Земли.

Отражение:

Некоторые поверхности, такие как песок (12%), трава (10%) или вода (5%) способны отражать ультрафиолетовое излучение, которое на них попадает. В таких местах интенсивность УФ-излучения может быть значительно выше ожидаемых результатов даже в тени.

Озон:

Озоновый слой поглощает часть ультрафиолетового излучения Солнца, которое направлялось к поверхности Земли. Толщина озонового слоя изменяется в течение года, а сам он постоянно перемещается.

Инфракрасное излучение - это разновидность электромагнитного излучения, занимающего в спектре электромагнитных волн диапазон от 0,77 до 340 мкм. При этом диапазон от 0,77 до 15 мкм считается коротковолновым, от 15 до 100 мкм - средневолновым, а от 100 до 340 - длинноволновым.

Коротковолновая часть спектра примыкает к видимому свету, а длинноволновая сливается с областью ультракоротких радиоволн. Поэтому инфракрасное излучение обладает как свойствами видимого света (распространяется прямолинейно, отражается, преломляется как и видимый свет), так и свойствами радиоволн (оно может проходить сквозь некоторые материалы, непрозрачные для видимого излучения).

Инфракрасные излучатели с температурой на поверхности от 700 С до 2500 С имеют длину волны 1,55-2,55 мкм и называются "светлыми" - по длине волны они ближе к видимому свету, излучатели с более низкой температурой поверхности имеют большую длину волны и называются "темными".

Что является источником инфракрасного излучения?

Вообще говоря, любое тело, нагретое до определенной температуры, излучает тепловую энергию в инфракрасном диапазоне спектра электромагнитных волн и может передавать эту энергию посредством лучистого теплообмена другим телам. Передача энергии происходит от тела с более высокой температурой к телу с более низкой температурой, при этом, разные тела имеют различную излучающую и поглощающую способность, которая зависит от природы двух тел, от состояния их поверхности и т.д.

Применение



Инфракрасные лучи применяются в медицинских целях, если излучение не слишком сильно. Они положительно влияют на организм человека. Инфракрасные лучи обладают возможностью повышать местный кровоток в организме, усиливать обмен веществ, расширять кровеносные сосуды.

  • Дистанционное управление
Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Они не отвлекают внимание человека в силу своей невидимости.

  • При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

  • Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

  • Антикоррозийное средство

Инфракрасные лучи применяются, с целью предотвращения коррозии покрываемых лаком поверхностей.

  • Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.


Ультрафиолетовое излучение (от ультра... и фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн l 400—10 нм. Вся область Ультрафиолетовое излучение условно делится на ближнюю (400—200 нм ) и далёкую, или вакуумную (200—10 нм ); последнее название обусловлено тем, что Ультрафиолетовое излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Положительные эффекты

В ХХ веке было впервые показано как УФ-излучение оказывает благотворное воздействие на человека. Физиологическое действие Уф-лучей было исследовано отечественными и зарубежными исследователями в середине прошлого столетия (Г. Варшавер. Г. Франк. Н. Данциг, Н. Галанин. Н. Каплун, А. Парфенов, Е. Беликова. В. Dugger. J. Hassesser. Н. Ronge, Е. Biekford и др.) |1-3|. Было убедительно доказано в сотнях экспериментов, что излучение в УФ области спектра (290—400 нм) повышает тонус симпатико-адреналиновой системы, активирует защитные механизмы, повышает уровень неспецифического иммунитета, а также увеличивает секрецию ряда гормонов. Под воздействием УФ излучения (УФИ) образуются гистамин и подобные ему вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов. Изменяется углеводный и белковый обмен веществ в организме. Действие оптического излучения изменяет легочную вентиляцию — частоту и ритм дыхания; повышается газообмен, потребление кислорода, активизируется деятельность эндокринной системы. Особенно значительна роль УФ излучения в образовании в организме витамина Д, укрепляющего костно-мышечную систему и обладающего антирахитным действием. Особо следует отметить, что длительная недостаточность УФИ может иметь неблагоприятные последствия для человеческого организма, называемые «световым голоданием». Наиболее частым проявлением этого заболевания является нарушение минерального обмена веществ, снижение иммунитета, быстрая утомляемость и т. п.

Действие на кожу

Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к ожогам.

Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи, ускоряет старение и появление морщин.

При контролируемом воздействии на кожу ультрафиолетовых лучей, одним из основных положительных факторов считается образование на коже витамина D, при условии, что на ней сохраняется естественная жировая пленка. Жир кожного сала, находящийся на поверхности кожи, подвергается воздействию ультрафиолета и затем снова впитывается в кожу. Но если смыть кожный жир перед тем, как выйти на солнечный свет, витамин D не сможет образоваться. Если принять ванну сразу же после пребывания на солнце и смыть жир, то витамин D может не успеть впитаться в кожу.

Действие на сетчатку глаза

Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Так, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения, несмотря на многочисленные предупреждения о вреде его наблюдения без защиты глаз. Они жаловались на резкое снижение зрения и пятно перед глазами.

Тем не менее, ультрафиолет чрезвычайно нужен для глаз человека, о чем свидетельствуют большинство офтальмологов. Солнечный свет оказывает расслабляющее воздействие на окологлазные мускулы, стимулирует радужную оболочку и нервы глаз, увеличивает циркуляцию крови. Регулярно укрепляя с помощью солнечных ванн нервы сетчатки, вы избавитесь от болезненных ощущений в глазах, возникающих при интенсивном солнечном свете.


Источники: