Производство, передача и использование электроэнергии

Хохлова Кристина

Презентация на тему "Производство, передача и использование электрической энергии"

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Презентация Производство, передача и использование электрической энергии Хохлова Кристина, 11 класс, МОУ-СОШ № 64

План презентации Произвотство электроэнергии Типы электростанций Альтернативные источники энергии Передача электроэнергии Использование электроэнергии

Подразделяют несколько видов электростанций: Типы электростанций ТЭС ГЭС АЭС

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Наиболее экономичными являются крупные тепловые паротурбинные электростанции Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. ТЭС

ТЭС ТЭС подразделяются на: Конденсационные (КЭС) Они предназначенные для выработки только электрической энергии. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС). теплоэлектроцентрали (ТЭЦ) производящие кроме электрической тепловую энергию в виде горячей воды и пара.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию. Напор ГЭС создается концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. ГЭС

Мощность ГЭС Так же ГЭС подразделяют на: Мощность ГЭС зависит от напора, расхода воды, используемого в гидротурбинах, и кпд гидроагрегата. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а, кроме того, меняется расход при регулировании мощности ГЭС. высоконапорные (более 60 м) средненапорные (от 25 до 60 м) низконапорные (от 3 до 25 м) Средние (до 25 МВт) Мощные (свыше 25 МВт) Малые (до 5 МВт)

Особое место среди ГЭС занимают: Гидроаккумулирующие электростанции (ГАЭС) Способность ГАЭС аккумулировать энергию основана на том, что свободная в энергосистеме в некоторый период времени электрическая энергия используется агрегатами ГАЭС, которые, работая в режиме насоса, нагнетают воду из водохранилища в верхний аккумулирующий бассейн. В период пиков нагрузки аккумулированная энергия возвращается в энергосистему Приливные электростанции (ПЭС) ПЭС преобразуют энергию морских приливов в электрическую. Электроэнергия приливных ГЭС в силу некоторых особенностей, связанных с периодичным характером приливов и отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют провалы мощности приливных электростанций в течение суток или месяцев.

Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu) . Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.). Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. АЭС

АЭС Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах: графитоводные с водяным теплоносителем и графитовым замедлителем тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя водо-водяные с обычной водой в качестве замедлителя и теплоносителя граффито - газовые с газовым теплоносителем и графитовым замедлителем

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реактороносителе, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя, трубопроводы и арматура циркуляции контура, устройства для перезагрузки ядерного горючего, системы специальной вентиляции, аварийного расхолаживания и др. Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпантиновый песок. Оборудование реакторного контура должно быть полностью герметичным. АЭС

Альтернативные источники энергии. Энергия солнца Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовления гелиостатов, коллекторов, другой аппаратуры, их перевозки. Ветровая энергия Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические условия позволяют развивать ветроэнергетику на огромной территории. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок. Энергия земли Энергия Земли пригодна не только для отопления помещений, как это происходит в Исландии, но и для получения электроэнергии. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины-360 тысяч киловатт.

Энергия Солнца Энергия воздуха Энеригя земли

Передача электроэнергии Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимость передачи электроэнергии на расстояния, достигающие иногда сотен километров. Но передача электроэнергии на большие расстояния связана с заметными потерями. Дело в том, что, протекая по линиям электропередачи, ток нагревает их. В соответствии с законом Джоуля - Ленца, энергия, расходуемая на нагрев проводов линии, определяется формулой: Q= I 2 Rt где R - сопротивление линии. При большой длине линии передача энергии может стать вообще экономически невыгодной. Для уменьшения потерь можно увеличить прощадь поперечьного сечения проводов. Но при уменьшении R в 100 раз массу надо увеличить тоже в 100 раз. Такой расход цветного метала нельзя допускать. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в линии. Например, уменьшение тока в 10 раз уменьшает количество выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же эффект, что и от стократного утяжеления провода. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько уменьшает силу тока. Потери мощности при этом невелики. Электрические станции ряда областей страны соединены высоковольтными линиями передач, образуя общую электросеть, к которой присоединены потребители. Такое объединение называется энергосистемой. Энергосистема обеспечивает бесперебойность подачи энергии потребителям не зависимо от их месторасположения.

Использование электроэнергии в различных областях науки Наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. Около 80% прироста ВВП развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на растояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной« революции в экономике развитых стран. Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, например волоконная техника, позволяют значительно снизить потери электроэнергии в процессе передачи сигналов на большие расстояния. Созданы совершенно новые средства получения информации, ее накопления, обработки и передачи, в совокупности образующие сложную информационную структуру.

Использование электроэнергии в произвотстве Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность.

Использование электроэнергии в быту Электроэнергия в быту неотъемлемый помощник. Каждый день мы имеем с ней дело, и, наверное, уже не представляем свою жизнь без нее. Вспомните, когда последний раз вам отключали свет, то есть в ваш дом не поступала электроэнергия, вспомните, как вы ругались, что ничего не успеваете и вам нужен свет, вам нужен телевизор, чайник и куча других электроприборов. Ведь если нас обесточить навсегда, то мы просто вернемся в те давние времена, когда еду готовили на костре и жи ли в холодных вигвамах. Значимости электроэнергии в нашей жизни можно посветить целую поэму, настолько она важна в нашей жизни и настолько мы привыкли к ней. Хотя мы уже и не замечаем, что она поступает к нам в дома, но когда ее отключают, становится очень не комфортно.

Спасибо за внимание

БОУ Чувашской Республики СПО «АСХТ» Минобразования Чувашии

МЕТОДИЧЕСКАЯ

РАЗРАБОТКА

открытого занятия по дисциплине «Физика»

Тема: Производство, передача и потребление электрической энергии

высшей квалификационной категории

Алатырь, 2012год

РАССМОТРЕНО

на заседании методической комиссии

гуманитарных и естественнонаучных

дисциплин

Протокол № __ от «___» ______ 2012г.

Председатель_____________________

Рецензент: Ермакова Н.Е., преподаватель БОУ ЧР СПО «АСХТ», председатель ПЦК гуманитарных и естественнонаучных дисциплин

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Трудно представить существование современной цивилизации без электроэнергии. Если в нашей квартире отключается свет хотя бы на несколько минут, то мы уже испытываем многочисленные неудобства. А что произойдет при отключении электроэнергии на несколько часов! Электрический ток – основной источник электроэнергии. Вот почему так важно представлять физические основы получения, передачи и использования переменного электрического тока.

  1. Пояснительная записка

  2. Содержание основной части

  3. Библиографический список

  4. Приложения.

Пояснительная записка

Цели:
- познакомить студентов с физическими основами производства, передачи и

использования электрической энергии

Способствовать формированию у студентов информационной и коммуникативной

компетентностей

Углубить познания о развитии электроэнергетики и связанных с этим экологических

проблем, воспитание чувства ответственности за сохранение окружающей среды

Обоснование выбранной темы:

Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Электроэнергия была и остается главной составляющей жизни человека. Какой будет энергетика ХХІ века? Чтобы дать ответы на этот вопрос необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря Данное занятие позволяет сформировать у студентов умение перерабатывать информацию и применять знания теории на практике, развивать навыки самостоятельной работы с различными источниками информации. На этом занятии раскрываются возможности формирования информационной и коммуникативной компетентностей

План занятия

по дисциплине «Физика»
Дата: 16.04.2012 г.
Группа: 11 тв
Цели:

- образовательная: - познакомить студентов с физическими основами производства,

передачи и использования электрической энергии

Способствовать формированию у студентов информационной и

коммуникативной компетентностей

Углубить познания о развитии электроэнергетики и связанных с

этим экологических проблем, воспитание чувства ответственности

за сохранение окружающей среды

- развивающая:: - формировать умений перерабатывать информацию и применять

знания теории на практике;

Развивать навыки самостоятельной работы с различными

источниками информации

Развивать познавательный интерес к предмету.
- воспитательная: - воспитывать познавательную активность студентов;

Воспитывать умение слушать и быть услышанным;

Воспитывать самостоятельность студентов в приобретении новых

знаний


- воспитывать коммуникативные качества при работе в группах
Задача: формирование ключевых компетенций при изучении производства, передачи и использования электрической энергии
Вид занятия - урок
Тип занятия - комбинированный урок
Средства обучения: учебники, справочники, раздаточный материал, мультимедийный проектор,

экран, электронная презентация


Ход занятия:

  1. Организационный момент (проверка отсутствующих, готовности группы к уроку)

  2. Организация целевого пространства

  3. Проверка знаний студентов, сообщение темы и плана опроса, постановка цели
Тема: «Трансформаторы»

Действия педагога

Действия студентов


Методы проведения



  1. Проводит фронтальную беседу, корректирует ответы студентов:
1) В чём преимущества электрической энергии перед другими видами энергии?

2) С помощью какого устройства изменяют силу переменного тока и напряжение?

3) Каково его назначение?

4) Каково устройство трансформатора?

6) Что такое коэффициент трансформации? Каким он бывает численно?

7) Какой трансформатор называют повышающим, какой понижающим?

8) Что называют мощностью трансформатора?


  1. Предлагает решить задачу

  1. Проводит тестирование

  2. Предлагает студентам ключи к тесту для проведения самопроверки

  1. Отвечают на вопросы

    1. Находят правильные ответы

    2. Корректируют ответы товарищей

    3. Вырабатывают критерии своего поведения

    4. Сравнивают и находят общее и отличное в явлениях

  1. Анализируют решение, ищут ошибки, обосновывают ответ

  1. Отвечают на вопросы теста

  2. Проводят взаимопроверку тестов

Фронтальная беседа

Решение задач

Тестирование


  1. Подведение итогов проверки основных положений изученного раздела

  2. Сообщение темы, постановка цели, плана изучения нового материала

Тема: «Производство, передача и потребление электроэнергии»
План: 1) Производство электроэнергии:

а) Промышленная энергетика (ГЭС, ТЭС, АЭС)

б) Альтернативная энергетика (ГеоТЭС, СЭС, ВЭС, ПЭС)

2) Передача электрической энергии

3) Эффективное использование электрической энергии

4) Энергетика Чувашской Республики


  1. Мотивация учебной деятельности студентов

Действия педагога

Действия студентов


Метод изучения



  1. Организует целевое пространство, знакомит с планом изучения темы

  2. Знакомит с основными способами производства электроэнергии

  3. Предлагает студентам выделить физические основы производства электроэнергии

  4. Предлагает заполнить обобщающую таблицу

  5. Формирует умения перерабатывать информацию, выделять главное, анализировать, сравнивать, находить общее и отличное, делать выводы;

  1. Осознают цели, записывают план

  1. Слушают, осознают, анализируют

  1. Делают доклад, слушают докладчика, осмысливают услышанное, делают выводы

  1. Исследуют средства, обобщают, делают выводы, заполняют таблицу

  2. Сравнивают, находят общее и отличное

Опережающая самостоятельная работа


Исследование
Доклады студентов

  1. Закрепление нового материала

  1. Обобщение и систематизация материала.

  2. Проведение итогов занятия.

  3. Задание для самостоятельной работы студентов во внеаудиторное время.

  • Учебник § 39-41, закончить заполнение таблицы
Тема: Производство, передача и потребление электроэнергии
Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Столь широкое применение электроэнергии объясняется ее преимуществами перед другими видами энергии. Электроэнергия была и остается главной составляющей жизни человека Главные вопросы – сколько энергии нужно человечеству? Какой будет энергетика ХХІ века? Чтобы дать ответы на эти вопросы необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря.

Преобразования энергии различных видов в электрическую энергию происходит на электростанциях. Рассмотрим физические основы производства электроэнергии на электростанциях.

Статистические данные о производстве электроэнергии в России, млрд кВтч

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы:


  • Электростанции промышленной энергетики: ГЭС, ТЭС, АЭС

  • Электростанции альтернативной энергетики: ПЭС, СЭС, ВЭС, ГеоТЭС

Гидроэлектростанции
Гидроэлектростанция представляет собой комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию На ГЭС электроэнергию получают, используя энергию воды, перетекающей с высшего уровня к низшему уровню и вращающей при этом турбину. Плотина – самый важный и самый дорогостоящий элемент ГЭС. Вода перетекает с верхнего бьефа в нижний бьеф по специальным трубопроводам, либо по выполненным в теле плотины каналам и приобретает большую скорость. Струя воды поступает на лопасти гидротурбины. Ротор гидротурбины приводится во вращение под действием центробежной силы струи воды. Вал турбины соединяется с валом электрического генератора, и при вращении ротора генератора механическая энергия ротора преобразуется в электрическую энергию.
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Однако гидроэнергетика не безвредна для окружающей среды. При постройке плотины образуется водохранилище. Вода, залившая огромные площади, необратимо изменяет окружающую среду. Подъем уровня реки плотиной может вызвать заболоченность, засоленность, изменения прибрежной растительности и микроклимата. Поэтому так важно создание и использование экологически безвредных гидротехнических сооружений.
Теплоэлектростанции
Тепловая электростанция (ТЭС) – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основными видами топлива для ТЭС являются природные ресурсы – газ, уголь, торф, горючие сланцы, мазут. Тепловые электростанции разделяются на две группы: конденсационные и теплофикационные или теплоцентрали (ТЭЦ). Конденсационные станции снабжают потребителей только электрической энергией. Их сооружают вблизи залежей местного топлива с тем, чтобы не возить его на большие расстояния. Теплоцентрали снабжают потребителей не только электрической энергией, но и теплом – водяным паром или горячей водой, поэтому ТЭЦ сооружают поблизости от приемников теплоты, в центрах промышленных районов и крупных городов для уменьшения протяженности теплофикационных сетей. Топливо транспортируют на ТЭЦ из мест его добычи. В машинном зале ТЭС установлен котел с водой. За счет тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 550°С и под давлением 25 МПа поступает по паропроводу в паровую турбину, назначение которой превращать тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. После паровой турбины водяной пар, имея уже низкое давление и температуру около 25°С, поступает в конденсатор. Здесь пар с помощью охлаждающей воды превращается в воду, которая с помощью насоса снова подается в котел. Цикл начинается снова. ТЭС работают на органическом топливе, но это, к сожалению, невосполнимые природные ресурсы. К тому же, работа ТЭС сопровождается экологическими проблемами: при сгорании топлива происходит тепловое и химическое загрязнение среды, что оказывает губительное воздействие на живой мир водоемов и качество питьевой воды.
Атомные электростанции
Атомная электростанция (АЭС) – электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Атомные электростанции действуют по такому же принципу, что и тепловые электростанции, но используют для парообразования энергию, получающуюся при делении тяжелых атомных ядер (урана, плутония). В активной зоне реактора протекают ядерные реакции, сопровождающиеся выделением огромной энергии. Вода, соприкасающаяся в активной зоне реактора с тепловыделяющими элементами, забирает у них тепло и передает это тепло в теплообменнике также воде, но уже не представляющей опасности радиоактивного излучения. Поскольку вода в теплообменнике превращается в пар, его называют парогенератором. Горячий пар поступает в турбину, преобразующую тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: не требуют привязки к источнику сырья и собственно могут быть размещены в любом месте, при нормальном режиме функционирования считаются экологически безопасными. Но при авариях на АЭС возникает потенциальная опасность радиационного загрязнения среды. Кроме того существенной проблемой остается утилизация радиоактивных отходов и демонтаж отслуживших свой срок АЭС.
Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены, не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района. Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии - потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений.
Приливные электростанции
Использование энергии приливов началось еще в ХІ веке, когда на берегах Белого и Северного морей появились мельницы и лесопилки. Два раза в сутки уровень океана то поднимается под действием гравитационных сил Луны и Солнца, притягивающих к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13-18 метров. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 метров. В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. Приливные электростанции двустороннего действия способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока. Недостаток приливных электростанций в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.
Ветряные электростанции
Энергия ветра – это косвенная форма солнечной энергии, являющаяся следствием разности температур и давлений в атмосфере Земли. Около 2% поступающей на Землю солнечной энергии превращается в энергию ветра. Ветер – возобновляемый источник энергии. Его энергию можно использовать почти во всех районах Земли. Получение электроэнергии от ветросиловых установок является чрезвычайно привлекательной, но вместе с тем технически сложной задачей. Трудность заключается в очень большой рассеянности энергии ветра и в его непостоянстве. Принцип действия ветряных электростанций прост: ветер крутит лопасти установки, приводя в движение вал электрогенератора. Генератор вырабатывает электрическую энергию, и, таким образом, энергия ветра превращается в электрический ток. Производство ВЭС очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные установки даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ВЭС вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ВЭС, необходимы огромные площади много больше, чем для других типов электрогенераторов. И все же изолированные ВЭС с тепловыми двигателями как резерв и ВЭС, которые работают параллельно с тепло – и гидростанциями, должны занять видное место в энергоснабжении тех районов, где скорость ветра превышает 5 м/с.
Геотермальные электростанции
Геотермальная энергия – это энергия внутренних областей Земли. Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Геотермальное тепло – это тепло, содержащееся в подземной горячей воде и водяном паре, и тепло нагретых сухих пород. Геотермальные тепловые электростанции (ГеоТЭС) преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электрическую энергию. Источниками геотермальной энергии могут быть подземные бассейны естественных теплоносителей – горячей воды или пара. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Полученный таким способом природный пар после предварительной очистки от газов, вызывающих разрушение труб, направляется в турбины, соединенные с электрогенераторами. Использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии. К недостаткам ГеоТЭС относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы создают в окрестностях немалый шум и могут, к тому же, содержать отравляющие вещества. Кроме того, ГеоТЭС построить можно не везде, потому что для ее постройки необходимы геологические условия.
Солнечные электростанции
Солнечная энергия – наиболее грандиозный, дешевый, но, и, пожалуй, наименее используемый человеком источник энергии. Преобразование энергии солнечного излучения в электрическую энергию осуществляется с помощью солнечных электростанций. Различают термодинамические СЭС, в которых солнечная энергия сначала преобразуется в тепловую, а затем в электрическую; и фотоэлектрические станции, непосредственно преобразующие солнечную энергию в электрическую энергию. Фотоэлектрические станции бесперебойно снабжают электроэнергией речные бакены, сигнальные огни, системы аварийной связи, лампы маяков и многие другие объекты, расположенные в труднодоступных местах. По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения (отопления, горячего водоснабжения, освещения и питания бытовых электроприборов). Солнечные электростанции обладают заметным преимуществом перед станциями других типов: отсутствием вредных выбросов и экологической чистотой, бесшумностью в работе, сохранением в неприкосновенности земных недр.
Передача электроэнергии на расстояние
Электроэнергия производится вблизи источников топлива или гидроресурсов, в то время как ее потребители находятся повсеместно. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния. Рассмотрим принципиальную схему передачи электроэнергии от генератора к потребителю. Обычно генераторы переменного тока на электростанциях вырабатывают напряжение, не превышающее 20 кВ, так как при более высоких напряжениях резко возрастает возможность электрического пробоя изоляции в обмотке и в других частях генератора. Для сохранения передаваемой мощности напряжение в ЛЭП должно быть максимальным, поэтому на крупных электростанциях ставят повышающие трансформаторы. Однако напряжение в линии электропередачи ограничено: при слишком высоком напряжении между проводами возникают разряды, приводящие к потерям энергии. Для использования электроэнергии на промышленных предприятиях требуется значительное снижение напряжения, осуществляемое с помощью понижающих трансформаторов. Дальнейшее снижение напряжения до величины порядка 4 кВ необходимо для электрораспределения по местным сетям, т.е. по тем проводам, которые мы видим на окраинах наших городов. Менее мощные трансформаторы снижают напряжение до 220 В (напряжение, используемое большинством индивидуальных потребителей).

Эффективное использование электроэнергии
Электроэнергия занимает существенное место в статье расходов каждой семьи. Ее эффективное использование позволит значительно снизить издержки. Все чаще в наших квартирах «прописываются» компьютеры, посудомоечные машины, кухонные комбайны. Поэтому и плата за электроэнергию весьма значительна. Возросшее энергопотребление приводит к дополнительному потреблению невозобновляемых природных ресурсов: уголь, нефть, газ. При сжигании топлива в атмосферу выбрасывается углекислый газ, что приводит к пагубным климатическим изменениям. Экономия электричества позволяет сократить потребление природных ресурсов, а значит, и снизить выбросы вредных веществ в атмосферу.

Четыре ступени энергосбережения


  • Не забывайте выключать свет.

  • Использовать энергосберегающие лампочки и бытовую технику класса А.

  • Хорошо утеплять окна и двери.

  • Установить регуляторы подачи тепла (батареи с вентилем).

Энергетика Чувашии - одна из самых развитых отраслей промышленности республики, от работы которой напрямую зависит социальное, экономическое и политическое благополучие. Энергетика - это основа функционирования экономики и жизнеобеспечения республики. Работа энергетического комплекса Чувашии настолько прочно связана с повседневной жизнью каждого предприятия, учреждения, фирмы, дома, каждой квартиры и в итоге – каждого жителя нашей республики.


В самом начале XX века, когда электроэнергетика делала еще только первые практические шаги.

До 1917г. на территории современной Чувашии не было ни одной электрической станции общественного пользования. Крестьянские дома освещались лучиной.

В промышленности имелось всего 16 первичных двигателей. В Алатырском уезде электроэнергию производили и использовали на лесопильном заводе, на мукомольных предприятиях. Небольшая электростанция имелась на винокуренном заводе вблизи Марпосада. Собственную электростанцию на маслобойном заводе в г.Ядрине имели купцы Таланцевы. В Чебоксарах небольшую электростанцию имел купец Ефремов. Она обслуживала лесопильное производство и два его дома.

Как в домах, так и на улицах городов Чувашии света почти не было.

Развитие энергетики Чувашии начинается после 1917г. С 1918г. начинается строительство электростанций общественного пользования, разворачивается большая работа по созданию электроэнергетики в г.Алатырь. Первую электростанцию решили построить в то время на бывшем заводе Попова.

В Чебоксарах вопросами электрификации занимался отдел коммунального хозяйства. Его усилиями в 1918г. возобновила работу электростанция на лесопильном заводе, принадлежавшем купцу Ефремову. Электроэнергия по двум линиям поступала в государственные учреждения и на уличное освещение.

Образование Чувашской автономной области (24 июня 1920г.) создало благоприятные условия для развития энергетики. Именно в 1920г. в связи с острой нуждой областной отдел коммунального хозяйства оборудовал первую небольшую электростанцию г.Чебоксары, мощность в 12 кВт.

Мариинско-Посадская электростанция была оборудована в 1919г. Начала давать электроэнергию Марпосадская городская электростанция. Цивильская электростанция была построена в 1919г., но из-за отсутствия линий электропередач отпуск электроэнергии стал производиться только с 1923 года.

Таким образом, первые основы энергетики Чувашии закладывались в годы интервенции и гражданской войны. Создавались первые небольшие городские коммунальные электростанции общественного пользования общей мощностью около 20 кВт.

До революции 1917 года на территории Чувашии не было ни одной электрической станции общественного пользования, в домах царила лучина. При лучине или керосиновой лампе работали даже в небольших мастерских. Здесь же кустари использовали оборудование с механическим приводом. На более солидных предприятиях, где обрабатывали сельскохозяйственные и лесные продукты, варили бумагу, сбивали масло и мололи муку,

имелось 16 маломощных двигателей.

При большевиках пионером энергетики Чувашии стал г. Алатырь. В этом небольшом городке благодаря усилиям местного совнархоза появилась первая общественная электростанция.


В Чебоксарах вся электрификация в 1918 году свелась к тому, что восстановили электростанцию на конфискованном у купца Ефремова лесопильном заводе, который стал называться «Имени 25 октября». Однако ее электроэнергии хватило лишь на освещение некоторых улиц и госучреждений (по статистике в 1920 году городским чиновникам светило около 100 лампочек мощностью 20 свечей).

В 1924 году были построены еще три небольших электростанции, и, для управления увеличивающейся энергетической базой, 1 октября 1924 года было создано Чувашское объединение коммунальных электростанций – ЧОКЭС. В 1925 году Госплан республики принял план электрификации, по которому предусматривалось за 5 лет построить 8 новых электростанций – 5 городских (в Чебоксарах, Канаше, Марпосаде, Цивильске и Ядрине) и 3 сельских (в Ибресях, Вурнарах и Урмарах). Реализация этого проекта позволила электрифицировать 100 сел – в основном Чебоксарского и Цивильского районов и вдоль тракта Чебоксары – Канаш, 700 крестьянских дворов, некоторые кустарные мастерские.
За 1929-1932 годы мощности коммунальных и промышленных электростанций республики выросли почти в 10 раз; выработка электроэнергии этими электростанциями увеличилась почти в 30 раз.

В годы Великой Отечественной войны были проведены большие мероприятия по укреплению и развитию энергетической базы промышленности республики. Рост мощностей происходил главным образом за счёт роста мощностей районных, коммунальных и сельских электростанций. Энергетики Чувашии с честью выдержали тяжёлое испытание и выполнили свой патриотический долг. Они понимали, что производимая электроэнергия необходима, в первую очередь, предприятиям, выполняющим заказы с фронта.


За годы послевоенной пятилетки в Чувашской АССР построено и сдано в эксплуатацию 102 сельских электростанции, вт.ч. 69 ГЭС и 33 ТЭС. Отпуск электроэнергии сельскому хозяйству увеличился в 3 раза по сравнению с 1945 годом.
В 1953 году в Алатыре по приказу, подписанному Сталиным, было начато строительство Алатырской ТЭС. Первый турбогенератор мощностью 4 МВТ был введен в эксплуатацию в 1957 году, 2-й - в 1959 году. По прогнозам, мощности ТЭС должно было хватить до1985 г. как для города, так и района и обеспечить электроэнергией Тургеньевский Светозавод в Мордовии.

Библиографический список


  1. Учебник С.В.Громова «Физика, 10 класс». Москва: Просвещение.

  2. Энциклопедический словарь юного физика. Состав. В.А. Чуянов, Москва: Педагогика.

  3. Эллион Л., Уилконс У.. Физика. Москва: Наука.

  4. Колтун М. Мир физики. Москва.

  5. Источники энергии. Факты, проблемы, решения. Москва: Наука и техника.

  6. Нетрадиционные источники энергии. Москва: Знание.

  7. Юдасин Л.С.. Энергетика: проблемы и надежды. Москва: Просвещение.

  8. Подгорный А.Н. Водородная энергетика. Москва: Наука.

Приложение

Электростанция

Первичный источник энергии


Схема преобразования

энергии

Преимущества


Недостатки






ГеоТЭС



.
Лист самоконтроля

Закончите предложение:

Энергосистема - это


  1. Электрическая система электростанции

  2. Электрическая система отдельного города

  3. Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Энергосистема - Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Что является источником энергии на ГЭС?


  1. Нефть, уголь, газ

  2. Энергия ветра

  3. Энергия воды

Какие источники энергии – возобновляемые или невозобновляемые – используются в Республике Чувашия?

Невозобновляемые



Расположите в хронологическом порядке источники энергии, которые становились доступны человечеству, начиная с самых ранних:

А. Электрическая тяга;

Б. Атомная энергия;

В. Мускульная энергия домашних животных;

Г. Энергия пара.



Назовите известные вам источники энергии, использование которых приведет к уменьшению экологических последствий электроэнергетики.


ПЭС
ГеоТЭС

Проверьте себя по ответам на экране и выставьте оценку:

5 верных ответов – 5

4 верных ответа – 4

3 верных ответа - 3


Переменное напряжение можно преобразовывать - повышать или понижать.

Устройства, с помощью которых можно преобразовывать напряжение называются трансформаторами. Работа трансформаторов основана наявлении электромагнитной индукции.

Устройство трансформатора

Трансформатор состоит из ферромагнитного сердечника, на который надеты две катушки .

Первичной обмоткой называется катушка, подключенная к источнику переменного напряжения U 1 .

Вторичной обмоткой называется катушка, которую можно подключать к приборам, потребляющим электрическую энергию .

Приборы, потребляющие электрическую энергию, выполняют роль нагрузки, и на них создается переменное напряжение U 2 .

Если U 1 > U 2 , то трансформатор называется понижающим, а еслиU 2 > U 1 - то повышающим.

Принцип работы

В первичной обмотке создается переменный ток, следовательно, в ней создается переменный магнитный поток. Этот поток замыкается в ферромагнитном сердечнике и пронизывает каждый виток обеих обмоток. В каждом из витков обеих обмоток появляется одинаковая ЭДС индукции e i 0

Если n 1 и n 2 - число витков в первичной и вторичной обмотках соответственно, то

ЭДС индукции в первичной обмотке e i 1 = n 1 * e i 0 ЭДС индукции во вторичной обмотке e i 2 = n 1 * e i 0

где e i 0 - ЭДС индукции, возникающая в одном витке вторичной и первичной катушки .

    1. Передача электроэнергии

П
ередача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.Потери энергии (мощности) на нагревание проводов можно рассчитать по формуле

Для уменьшения потерь на нагревания проводов необходимо увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется переменный ток частотой 50 Гц. На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии

41. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Свойства электромагнитных волн. Идеи теории Максвелла

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку законаэлектромагнитной индукции, открытого Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле .

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен далее непрерывно продолжаться и захватывать все новые области пространства.

Вывод:

Существует особая форма материи – электромагнитное поле – которое состоит из порождающих друг друга вихревых электрического и магнитного полей.

Электромагнитное поле характеризуется двумя векторными величинами – напряженностью Е вихревого электрического поля и индукцией В магнитного поля .

Процесс распространения изменяющихся вихревых электрического и магнитного полей в пространстве называется электромагнитной волной.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла)

Страница 1

Введение.

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.

Производство электроэнергии.

Типы электростанций.

Тепловая электростанция(ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС - основной вид элек­трической станций.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловые электрические стан­ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро­станций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рисунке. Уголь подается в топливный бункер 1, а из него - в дробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением 3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсацион­ные электростанции име­ют невысокий кпд (30- 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значи­тельном расстоянии от стан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя­тий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей - про­мышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Значительно меньшее распространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с темпера­турой 750-900 ºС поступают в газо­вую турбину, вращающую электрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическая энергия струй пара пере­дается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС - весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятков дисков с рабочими лопат­ками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики из­вестно, что КПД тепловых двига­телей увеличивается с ростом на­чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Все технологические процессы любого производства связаны с потреблением энергии. На их выполнение расходуется подавляющая часть энергетических ресурсов.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, гидроаккумулирующие, газотурбинные, а также маломощные электрические станции местного значения – ветряные, солнечные, геотермальные, морских приливов и отливов, дизельные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

При экономичной работе ТЭС, т.е. при одновременном отпуске потребителем оптимальных количеств электроэнергии и теплоты, их КПД достигает более 70 %. В период, когда полностью прекращается потребление теплоты (например, в неотопительный сезон), КПД станции снижается.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Различают ГЭС плотинного и деривационного типов. Плотинные ГЭС применяют на равнинных реках с небольшими напорами, деривационные (с обходными каналами) – на горных реках с большими уклонами и при небольшом расходе воды. Следует отметить, что работа ГЭС зависит от уровня воды, определяемого природными условиями.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Большинство электростанций объединены в энергетические системы , к каждой из которых предъявляются следующие требования:

  • Соответствие мощности генераторов и трансформаторов максимальной мощности потребителей электроэнергии.
  • Достаточная пропускная способность линий электропередач (ЛЭП).
  • Обеспечение бесперебойного электроснабжения при высоком качестве энергии.
  • Экономичность, безопасность и удобство в эксплуатации.

Для обеспечения указанных требований энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций. Диспетчерский пункт получает необходимые данные и сведения о состояниях технологического процесса на электростанциях (расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.); о работе системы – какие элементы системы (линии, трансформаторы, генераторы, нагрузки, котлы, паропроводы) в данный момент отключены, какие находятся в работе, в резерве и т.д.; об электрических параметрах режима (напряжениях, токах, активных и реактивных мощностях, частоте и т.д.).

Работа электростанций в системе даёт возможность за счёт большого количества параллельно работающих генераторов повысить надёжность электроснабжения потребителей, полностью загрузить наиболее экономические агрегаты электростанций, снизить стоимость выработки электроэнергии. Кроме того, в энергосистеме снижается установленная мощность резервного оборудования; обеспечивается более высокое качество электроэнергии, отпускаемой потребителям; увеличивается единичная мощность агрегатов, которые могут быть установлены в системе.

В России, как и во многих других странах, для производства и распределения электроэнергии применяется трёхфазный переменный ток частотой 50Гц (в США и ряде других стран 60Гц). Сети и установки трёхфазного тока более экономичны по сравнению с установками однофазного переменного тока, а также дают возможность широко использовать в качестве электропривода наиболее надёжные, простые и дешевые асинхронные электродвигатели.

Наряду с трёхфазным током в некоторых отраслях промышленности применяют постоянный ток, который получают выпрямлением переменного тока (электролиз в химической промышленности и цветной металлургии, электрифицированный транспорт и др.).

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500кВт и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи и получается большая экономия материалов за счёт сокращения сечений проводов. Поэтому в процессе передачи и распределения электрической энергии приходится повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами. Трансформатор не является электрической машиной, т.к. его работа не связана с преобразованием электрической энергии в механическую и наоборот; он преобразует лишь напряжение электрической энергии. Повышение напряжения осуществляется при помощи повышающих трансформаторов на электростанциях, а понижение – при помощи понижающих трансформаторов на подстанциях у потребителей.

Промежуточным звеном для передачи электроэнергии от трансформаторных подстанций к приёмникам электроэнергии являются электрические сети .

Трансформаторная подстанция – это электроустановка, предназначенная для преобразования и распределения электроэнергии.

Подстанции могут быть закрытыми или открытыми в зависимости от расположения её основного оборудования. Если оборудование находится в здании, то подстанция считается закрытой; если на открытом воздухе, то – открытой.

Оборудование подстанций может быть смонтировано из отдельных элементов устройств или из блоков, поставляемых в собранном для установки виде. Подстанции блочной конструкции называются комплектными.

В оборудование подстанций входят аппараты, осуществляющие коммутацию и защиту электрических цепей.

Основной элемент подстанций – силовой трансформатор. Конструктивно силовые трансформаторы выполняются так, чтобы максимально отвести тепло, выделяемое ими при работе от обмоток и сердечника в окружающую среду. Для этого, например, сердечник с обмотками погружают в бак с маслом, делают поверхность бака ребристой, с трубчатыми радиаторами.

Комплектные трансформаторные подстанции, устанавливаемые непосредственно в производственных помещениях мощностью до 1000 кВА, могут оснащаться сухими трансформаторами.

Для увеличения коэффициента мощности электроустановки на подстанциях устанавливают статические конденсаторы, компенсирующие реактивную мощность нагрузки.

Автоматическая система контроля и управления аппаратами подстанции следит за процессами, происходящими в нагрузке, в сетях электроснабжения. Она выполняет функции защиты трансформатора и сетей, отключает при посредстве выключателя защищаемые участки при аварийных режимах, осуществляет повторное включение, автоматическое включение резерва.

Трансформаторные подстанции промышленных предприятий подключаются к питающей сети различными способами в зависимости от требований надёжности бесперебойного электроснабжения потребителей.

Типовыми схемами, осуществляющими бесперебойное электроснабжение, являются радиальная, магистральная или кольцевая.

В радиальных схемах от распределительного щита трансформаторной подстанции отходят линии, питающие крупные электроприёмники: двигатели, групповые распределительные пункты, к которым присоединены более мелкие приёмники. Радиальные схемы применяются в компрессорных, насосных станциях, цехах взрыво- и пожароопасных, пыльных производств. Они обеспечивают высокую надёжность электроснабжения, позволяют широко использовать автоматическую аппаратуру управления и защиты, но требуют больших затрат на сооружение распределительных щитов, прокладку кабеля и проводов.

Магистральные схемы применяются при равномерном распределении нагрузки по площади цеха, когда не требуется сооружать распределительный щит на подстанции, что удешевляет объект; можно использовать сборные шинопроводы, что ускоряет монтаж. При этом перемещение технологического оборудования не требует переделки сети.

Недостатком магистральной схемы является низкая надёжность электроснабжения, так как при повреждении магистрали отключаются все электроприёмники, присоединённые к ней. Однако установка перемычек между магистралями и применение защиты существенно повышает надёжность электроснабжения при минимальных затратах на резервирование.

От подстанций ток пониженного напряжения промышленной частоты распределяется по цехам с помощью кабелей, проводов, шинопроводов от цехового распределительного устройства до устройств электроприводов отдельных машин.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Правилами устройства электроустановок все приёмники электрической энергии по надёжности электроснабжения подразделяются на три категории:

  • Приёмники энергии, для которых недопустим перерыв в электроснабжении, поскольку он может привести к повреждению оборудования, массовому браку продукции, нарушению сложного технологического процесса, нарушению работы особо важных элементов городского хозяйства и в конечном счёте – угрожать жизни людей.
  • Приёмники энергии, перерыв в электроснабжении которых приводит к невыполнению плана выпуска продукции, простою рабочих, механизмов и промышленного транспорта.
  • Остальные приёмники электрической энергии, например цехи несерийного и вспомогательного производства, склады.

Электроснабжение приёмников электрической энергии первой категории в любых случаях должно быть обеспечено и при нарушении его автоматически восстановлено. Поэтому такие приёмники должны иметь два независимых источника питания, каждый из которых может полностью обеспечить их электроэнергией.

Приёмники электроэнергии второй категории могут иметь резервный источник электроснабжения, подключение которого производится дежурным персоналом через некоторый промежуток времени после отказа основного источника.

Для приёмников третьей категории резервный источник питания, как правило, не предусматривается.

Электроснабжение предприятий подразделяется на внешнее и внутреннее. Внешнее электроснабжение – это система сетей и подстанций от источника электропитания (энергосистемы или электростанции) до трансформаторной подстанции предприятия. Передача энергии в этом случае осуществляется по кабельным или воздушным линиям номинальным напряжением 6, 10, 20, 35, 110 и 220 кВ. К внутреннему электроснабжению относится система распределения энергии внутри цехов предприятия и на его территории.

К силовой нагрузке (электродвигатели, электропечи) подводится напряжение 380 или 660 В, к осветительной – 220 В. Двигатели мощностью 200 кВт и более в целях снижения потерь целесообразно подключать на напряжение 6 или 10 кВ.

Наиболее распространённым на промышленных предприятиях является напряжение 380 В. Широко внедряется напряжение 660 В, что позволяет снизить потери энергии и расход цветных металлов в сетях низшего напряжения, увеличить радиус действия цеховых подстанций и мощность каждого трансформатора до 2500 кВА. В ряде случаев при напряжении 660 В экономически оправданным является применение асинхронных двигателей мощностью до 630 кВт.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Внутренняя проводка – это электропроводка, проложенная внутри здания; наружная – вне его, по наружным стенам здания, под навесами, на опорах. В зависимости от способа прокладки, внутренняя проводка может быть открытой, если она проложена по поверхности стен, потолков и т.д., и скрытой, если она проложена в конструктивных элементах зданий.

Проводка может быть проложена изолированным проводом или небронированным кабелем сечением до 16 кв.мм. В местах возможного механического воздействия электропроводку заключают в стальные трубы, герметизируют, если среда помещения взрывоопасная, агрессивная. На станках, полиграфических машинах проводка выполняется в трубах, в металлических рукавах проводом с полихлорвиниловой изоляцией, не разрушающейся от воздействия на неё машинными маслами. Большое количество проводов системы управления электропроводом машины укладывается в лотках. Для передачи электроэнергии в цехах с большим количеством производственных машин применяются шинопроводы.

Для передачи и распределения электроэнергии широко применяются силовые кабели в резиновой, свинцовой оболочке; небронированные и бронированные. Кабели могут укладываться в кабельные каналы, укрепляться на стенах, в земляных траншеях, заделываться в стены.