Ученые смогли объяснить, как зарождалась жизнь на земле. Когда возникла жизнь на земле

Безжизненные горы, камни и вода, огромная луна на небе и постоянная бомбардировка метеоритами - наиболее вероятный ландшафт Земли 4 миллиарда лет назад

Жизнь зародилась из неорганической материи в космосе или она возникла именно на Земле? Эта дилемма обязательно встает перед исследователем, заинтересовавшимся проблемой происхождения жизни. Доказать правоту какой-либо из двух существующих ныне гипотез до сих пор никому не удалось, как, впрочем, не удалось придумать и третий путь решения.

Первая гипотеза о происхождении жизни на Земле стара, в ее активе — солидные фигуры европейской науки: Г. Гельмгольц, Л. Пастер, С. Аррениус, В. Вернадский, Ф. Крик. Сложность живой материи, малая вероятность ее самозарождения на планете, а также неудачи экспериментаторов по синтезу живого из неживого приводят ученых в стан приверженцев данного подхода. Существуют многочисленные вариации того, как именно жизнь попала на Землю, и самая известная из них - теория панспермии. Согласно ей жизнь широко распространена в межзвездном пространстве, но поскольку там нет условий для развития, живая материя превращается в спермии, или споры, и таким образом перемещается по космосу. Миллиарды лет назад кометы занесли спермии на Землю, где сложилась благоприятная для их раскрытия среда.

Спермии - это мелкие зародыши, способные выдерживать большие перепады температур, космическое излучение и другие губительные для живого факторы внешней среды. Как предположил английский астроном Ф. Хойл, на роль спермий подходят межзвездные пылевые частицы, среди которых могут быть бактерии в графитовой оболочке. На сегодняшний день спермии в космосе не обнаружены. Но даже если бы они нашлись, столь удивительное открытие только сдвинуло бы проблему возникновения жизни с нашей планеты в другое место. И мы бы не избежали вопросов, откуда на Землю прилетели спермии и как они зародились. Вторая часть дилеммы - как из неорганической материи возникла жизнь - не столь романтична, поскольку опирается на законы физики и химии. Это узкий, механистический подход, именуемый теорией абиогенеза, вбирает в себя усилия многих специалистов. Возможно, из-за своей конкретности данный подход оказался плодотворным и за полстолетия продвинул целые разделы биохимии, эволюционной биологии и космологии.

По мнению ученых, синтез живой клетки - не за горами, это дело техники и вопрос времени. Но будет ли рожденная в пробирке клетка ответом на вопрос, как произошла жизнь на Земле? Вряд ли. Синтетическая клетка докажет лишь то, что абиогенез неким образом возможен. Но 4 миллиарда лет назад на Земле все могло произойти иначе. Например, так. Поверхность Земли остыла 4,5 миллиарда лет назад. Атмосфера была тонкой, и кометы активно бомбардировали Землю, в изобилии доставляя органику. Внеземное вещество оседало в мелких теплых водоемах, подогреваемых вулканами: на дне изливались лавы, росли острова, били горячие источники - фумаролы. Континенты в то время не были такими прочными и большими, как сейчас, они легко перемещались по земной коре, соединялись и распадались.

Луна была ближе, Земля вращалась быстрее, дни были короче, приливные волны выше, а шторма суровее. Над всем этим простирались стального цвета небеса, затемненные пыльными бурями, тучами вулканического пепла и осколками пород, выбитыми ударами метеоритов. Постепенно складывалась атмосфера, богатая азотом, углекислым газом и парами воды. Обилие парниковых газов вызвало потепление климата всей планеты. В таких экстремальных условиях происходил синтез живого вещества. Было ли это чудом, случайностью, произошедшим вопреки эволюции Вселенной, или только так и может появляться жизнь? Уже на ранних этапах проявилась одна из главных черт живой материи - приспособляемость к условиям среды. Ранняя атмосфера содержала мало свободного кислорода, озон был в дефиците, и земля купалась в ультрафиолетовых лучах, смертельных для живого. Так бы осталась планета необитаемой, если бы клетки не изобрели механизм защиты от ультрафиолета. Этот сценарий появления жизни в целом не отличается от предложенного еще Дарвином. Добавились новые детали - что-то узнали, изучая древнейшие горные породы и экспериментируя, о чем-то догадались. Будучи наиболее обоснованным, этот сценарий одновременно и самый спорный. Ученые бьются по каждому пункту, предлагая многочисленные альтернативы. Сомнения возникают с самого начала: откуда взялась первичная органика, произошел ли ее синтез на Земле или она упала с неба?

Революционная идея

Научные основы абиогенеза, или происхождение живого из неживого, заложил русский биохимик А.И. Опарин. В 1924 году, будучи 30-летним ученым, Опарин опубликовал статью «Происхождение жизни», которая, по мнению его коллег, «содержала семена интеллектуальной революции». Публикация книги Опарина на английском языке в 1938 году стала сенсацией и привлекла к проблеме жизни значительные интеллектуальные ресурсы Запада. В 1953 году С. Миллер, аспирант Университета Чикаго, провел успешный опыт по абиогенному синтезу. Он создал условия ранней Земли в лабораторной пробирке и в результате химической реакции получил набор аминокислот. Так, теория Опарина начала получать экспериментальные подтверждения.

Опарин и священник

По воспоминаниям коллег, академик А.И. Опарин был убежденным материалистом и атеистом. Тому подтверждение - его теория абиогенеза, которая, казалось бы, не оставляет надежды на сверхъестественное объяснение загадок жизни. Тем не менее взгляды и личность ученого привлекали к нему людей совершенно противоположных мировоззрений. Занимаясь научной и просветительской работой, участвуя в движении пацифистов, он много выезжал за рубеж. Однажды, где-то в 1950-х годах, Опарин читал лекции в Италии по проблеме происхождения жизни. После доклада ему сказали, что с ним хочет познакомиться не кто иной, как президент Папской академии наук из Ватикана. Александр Иванович, будучи советским человеком и прекрасно зная предвзятое отношение зарубежной интеллигенции к СССР, не ожидал от представителя католической церкви ничего хорошего, наверняка какая-нибудь провокация. Все же знакомство состоялось. Преподобный синьор пожал Опарину руку, поблагодарил за лекцию и воскликнул: «Профессор, я восхищен тем, как прекрасно Вы вскрыли промысел Божий!»

Вероятность возникновения жизни

Теория абиогенеза предполагает, что жизнь зародилась на определенном этапе развития материи. С момента образования Вселенной и первых частиц материя встает на путь постоянных изменений. Сначала возникли атомы и молекулы, потом появились звезды и пыль, из нее - планеты, а на планетах зародилась жизнь. Живое возникает из неживого, повинуясь некоему высшему закону, сущность которого нам пока неизвестна. Жизнь не могла не возникнуть на Земле, где были подходящие условия. Разумеется, опровергнуть сие метафизическое обобщение невозможно, но семена сомнения проросли. Дело в том, что условия, необходимые для синтеза жизни, весьма многочисленны, часто противоречат фактам и друг другу. К примеру, нет доказательств того, что на ранней Земле была восстановительная атмосфера. Неясно, как возник генетический код. Удивляет своей сложностью строение живой клетки и ее функции. Какова вообще вероятность зарождения жизни? Вот несколько примеров.

Белки состоят только из так называемых «левых» аминокислот, то есть асимметричных молекул, которые вращают поляризацию проходящего через них света влево. Почему при строительстве белка используются только левые аминокислоты, неизвестно. Может быть, это произошло случайно и где-то во Вселенной есть живые существа, состоящие из правых аминокислот. Скорее всего, в первичном бульоне, где происходил синтез исходных белков, было поровну левых и правых аминокислот. И только появление реально живой «левой» структуры нарушило эту симметрию и биогенный синтез аминокислот пошел по «левому» пути.

Впечатляет расчет, который Фред Хойл приводит в своей книге «Evolution from Space». Вероятность получения случайным образом 2 000 ферментов клетки, состоящих из 200 аминокислот каждый, равна 10 -4000 - абсурдно малая величина, даже если бы весь космос был органическим супом.

Вероятность синтеза одного белка, состоящего из 300 аминокислот, - один шанс на 2×10 390 . Опять ничтожно мало. Уменьшим число аминокислот в белке до 20, тогда число возможных комбинаций синтеза такого белка составит 1 018 - всего на порядок больше числа секунд в 4,5 миллиарда лет. Нетрудно видеть, что времени на перебор всех вариантов и выбор наилучшего у эволюции просто не было. Если учесть, что аминокислоты в белках соединены в определенные последовательности, а не случайным образом, то вероятность синтеза молекулы белка будет такой же, как если бы мартышка случайно напечатала одну из трагедий Шекспира, то есть почти нулевой.

Ученые рассчитали, что молекула ДНК, участвующая в простейшем цикле кодирования белков, должна была состоять из 600 нуклеотидов в определенной последовательности. Вероятность случайного синтеза такой ДНК равна 10 -400 , иначе говоря, для этого потребуется 10 400 попыток.

Не все ученые согласны с такими подсчетами вероятности. Они указывают, что рассчитывать шансы синтеза белка случайным перебором комбинаций некорректно, так как у молекул есть предпочтения, и одни химические связи всегда более вероятны, чем другие. По мнению австралийского биохимика Яна Мусгрейва, рассчитывать вероятность абиогенеза вообще бессмысленно. Во-первых, образование полимеров из мономеров не случайно, а подчиняется законам физики и химии. Вовторых, рассчитывать образование современных молекул белка, ДНК или РНК неправильно потому, что они не входили в состав первых живых систем. Возможно, в структуре существующих ныне организмов ничего не осталось от прошлых времен. Как сейчас считают, первыми организмами были очень простые системы коротких молекул, состоящих всего из 30-40 мономеров. Жизнь начиналась с очень простых организмов, постепенно усложняя конструкцию. Природа даже не пыталась сразу построить «Боинг-747». В-третьих, не надо бояться малой вероятности. Один шанс на миллион миллионов? И что с того, ведь он может выпасть с первой же попытки.

Что такое жизнь

Поисками определения жизни занимаются не только философы. Такое определение необходимо биохимикам, чтобы понять: а что же получилось в пробирке - живое или неживое? Палеонтологам, изучающим древнейшие горные породы в поисках начала жизни. Экзобиологам, ищущим организмы внеземного происхождения. Дать определение жизни непросто. Говоря словами Большой Советской Энциклопедии, «строго научное разграничение на живые и неживые объекты встречает определенные трудности». Действительно, что характерно только для живого организма? Может быть, набор внешних признаков? Нечто белое, мягкое, двигается, издает звуки. В это примитивное определение не попадают растения, микробы и еще многие организмы, потому что они молчат и не двигаются. Можно рассмотреть жизнь с химической точки зрения как материю, состоящую из сложных органических соединений: аминокислот, белков, жиров. Но тогда и простую механическую смесь этих соединений следует считать живой, что неверно. Более удачное определение, по которому в целом существует научный консенсус, связано с уникальными функциями живых систем.

Способность к размножению, когда потомкам передается точная копия наследственной информации, присуща всей земной жизни, причем даже самой малой ее частице - клетке. Вот почему клетку принимают за единицу измерения жизни. Слагаемые же клетки: белки, аминокислоты, ферменты - взятые по отдельности, живыми не будут. Отсюда следует важный вывод о том, что успешные опыты по синтезу этих веществ нельзя считать ответом на вопрос о происхождении жизни. В этой области произойдет революция, только когда станет ясно, как возникла целая клетка. Без сомнения, первооткрывателям тайны вручат Нобелевскую премию. Помимо функции размножения есть ряд необходимых, но недостаточных свойств системы для того, чтобы называться живой. Живой организм может приспосабливаться к изменению окружающей среды на генетическом уровне. Это очень важно для выживания. Благодаря изменчивости жизнь сохранилась на ранней Земле, во время катастроф и в суровые ледниковые периоды.

Важное свойство живой системы - каталитическая активность, то есть умение проводить только определенные реакции. На этом свойстве основан обмен веществ - выбор из окружающей среды нужных веществ, их переработка и получение энергии, необходимой для дальнейшей жизнедеятельности. Схема обмена веществ, которая представляет собой не что иное, как алгоритм выживания, зашита в генетическом коде клетки и через механизм наследственности передается потомкам. Химикам известно много систем с каталитической активностью, которые, однако, не умеют размножаться, и потому их нельзя считать живыми.

Решающий эксперимент

Нет никакой надежды, что однажды клетка получилась сама собой из атомов химических элементов. Это невероятный вариант. Простая клетка бактерии содержит сотни генов, тысячи белков и разных молекул. Фред Хойл шутил, что синтез клетки так же невероятен, как сборка «Боинга» ураганом, пронесшимся над свалкой запчастей. И все же «Боинг» существует, значит, он был каким-то образом «собран», точнее «самособран». По нынешним представлениям, «самосборка» «Боинга» началась 4,5 миллиарда лет назад, процесс шел постепенно и был растянут во времени на миллиард лет. По крайней мере 3,5 миллиарда лет назад живая клетка уже существовала на Земле.

Для синтеза живого из неживого на начальном этапе в атмосфере и водоемах планеты должны присутствовать простые органические и неорганические соединения: C, C 2 , C 3 , CH, CN, CO, CS, HCN, CH 3 CH, NH, O, OH, H 2 O, S. Стэнли Миллер в своих знаменитых опытах по абиогенному синтезу смешал водород, метан, аммиак и водяные пары, потом пропускал нагретую смесь через электрические разряды и охлаждал. Через неделю в колбе образовалась коричневая жидкость, содержащая семь аминокислот, и в том числе глицин, аланин и аспарагиновую кислоту, входящие в состав клеточных белков. Эксперимент Миллера показал, как могла образоваться предбиологическая органика - вещества, которые участвуют в синтезе более сложных компонентов клетки. С тех пор биологи считают этот вопрос решенным, несмотря на серьезную проблему. Дело в том, что абиогенный синтез аминокислот идет только в восстановительных условиях, вот почему Опарин полагал атмосферу ранней Земли метаново-аммиачной. Но геологи не согласны с таким выводом.

Проблема ранней атмосферы

Метану и аммиаку неоткуда взяться в большом количестве на Земле, считают специалисты. К тому же эти соединения очень неустойчивы и разрушаются под действием солнечного света, метаново-аммиачная атмосфера не могла бы существовать, даже если бы эти газы выделялись из недр планеты. По данным геологов, в атмосфере Земли 4,5 миллиарда лет назад преобладали углекислый газ и азот, что в химическом отношении создает нейтральную среду. Об этом свидетельствует состав древнейших горных пород, которые в тот период были выплавлены из мантии. Самые древние породы на планете возрастом 3,9 миллиарда лет обнаружили в Гренландии. Это так называемые серые гнейсы - сильно измененные магматические породы среднего состава. Изменение этих горных пород шло миллионы лет под влиянием углекислых флюидов мантии, которые одновременно насыщали и атмосферу. В таких условиях абиогенный синтез невозможен.

Проблему ранней атмосферы Земли пытается решить академик Э.М. Галимов, директор Института геохимии и аналитической химии им. В.И. Вернадского РАН. Он рассчитал, что земная кора возникла очень рано, в первые 50-100 миллионов лет после образования планеты, и была по преимуществу металлической. В таком случае мантия действительно должна была выделять метан и аммиак в достаточном количестве для создания восстановительных условий. Американские ученые К. Саган и К. Чайба предложили механизм самозащиты метановой атмосферы от разрушения. По их схеме разложение метана под действием ультрафиолета могло привести к созданию в верхних слоях атмосферы аэрозоля из частиц органики. Эти частицы поглощали солнечную радиацию и защищали восстановительную среду планеты. Правда, этот механизм разработали для Марса, но он применим и к ранней Земле.

Подходящие условия для образования предбиологической органики не сохранялись на Земле долго. В течение следующих 200-300 миллионов лет мантия начала окисляться, что привело к выделению из нее углекислого газа и смене состава атмосферы. Но к тому времени среда для зарождения жизни уже была подготовлена.

На дне морском

Первожизнь могла зародиться вокруг вулканов. Представьте себе на еще хрупком дне океанов многочисленные разломы и трещины, сочащиеся магмой и бурлящие газами. В таких зонах, насыщенных парами сероводорода, образуются месторождения сульфидов металлов: железа, цинка, меди. Что если синтез первичной органики шел прямо на поверхности железо-серных минералов с помощью реакции углекислоты и водорода? Благо вокруг много и того и другого: диоксид и оксид углерода выделяются из магмы, а водород - из воды при ее химическом взаимодействии с горячей магмой. Есть и необходимый для синтеза приток энергии.

Эта гипотеза не противоречит геологическим данным и основана на предположении, что ранние организмы жили в экстремальных условиях, как современные хемосинтетические бактерии. В 60-х годах XX века исследователи открыли на дне Тихого океана подводные вулканы - черные курильщики. Там в клубах ядовитых газов, без доступа солнечного света и кислорода, при температуре +120° существуют колонии микроорганизмов. Подобные черным курильщикам условия были на Земле уже 2,5 миллиарда лет назад, как о том свидетельствуют пласты строматолитов - следов жизнедеятельности синезеленых водорослей. Формы, похожие на этих микробов, есть и среди остатков древнейших организмов возрастом 3,5 миллиарда лет.

Для подтверждения вулканической гипотезы нужен эксперимент, который показал бы, что абиогенный синтез в данных условиях возможен. Работы в этом направлении ведут группы биохимиков из США, Германии, Англии и России, но пока безуспешно. Обнадеживающие результаты получил в 2003 году молодой исследователь Михаил Владимиров из лаборатории эволюционной биохимии Института биохимии им. А.Н. Баха РАН. Он создал в лаборатории искусственный черный курильщик: в автоклав, наполненный солевым раствором, был помещен диск из пирита (FeS 2), служивший катодом; через систему проходили углекислый газ и электрический ток. Через сутки в автоклаве появилась муравьиная кислота - простейшая органика, которая участвует в метаболизме живых клеток и служит материалом для абиогенного синтеза более сложных биологических веществ.


Цианобактерии, способные усваивать атмосферный азот

Охотники за обитаемыми планетами

Обе теории происхождения жизни, и панспермия и абиогенез, допускают, что жизнь не уникальное явление во Вселенной, она должна быть на других планетах. Но как ее обнаружить? Долгое время существовал единственный метод поиска жизни, который пока не дал положительных результатов, - по радиосигналам от инопланетян. В конце XX столетия возникла новая идея - с помощью телескопов искать планеты вне Солнечной системы. Началась охота за экзопланетами. В 1995 году поймали первый экземпляр: планету массой в пол-Юпитера, быстро вращающуюся вокруг 51-й звезды созвездия Пегас. В результате почти 10-летних поисков обнаружили 118 планетных систем, содержащих 141 планету. Ни одна из этих систем не похожа на Солнечную, ни одна из планет - на Землю. Найденные экзопланеты близки по массе к Юпитеру, то есть они гораздо больше Земли. Далекие гиганты непригодны для жизни в силу особенностей своих орбит. Часть из них вращается очень близко к своей звезде, значит, их поверхности раскалены и нет жидкой воды, в которой развивается жизнь. Остальные планеты - их меньшинство - перемещаются по вытянутой эллиптической орбите, что драматично влияет на климат: смена сезонов там должна быть очень резкой, а это губительно для организмов.

Обе теории происхождения жизни, и панспермия и абиогенез, допускают, что жизнь не уникальное явление во Вселенной, она должна быть на других планетах. Но как ее обнаружить? Долгое время существовал единственный метод поиска жизни, который пока не дал положительных результатов, - по радиосигналам от инопланетян. В конце XX столетия возникла новая идея - с помощью телескопов искать планеты вне Солнечной системы. Началась охота за экзопланетами. В 1995 году поймали первый экземпляр: планету массой в пол-Юпитера, быстро вращающуюся вокруг 51-й звезды созвездия Пегас. В результате почти 10-летних поисков обнаружили 118 планетных систем, содержащих 141 планету. Ни одна из этих систем не похожа на Солнечную, ни одна из планет - на Землю. Найденные экзопланеты близки по массе к Юпитеру, то есть они гораздо больше Земли. Далекие гиганты непригодны для жизни в силу особенностей своих орбит. Часть из них вращается очень близко к своей звезде, значит, их поверхности раскалены и нет жидкой воды, в которой развивается жизнь. Остальные планеты - их меньшинство - перемещаются по вытянутой эллиптической орбите, что драматично влияет на климат: смена сезонов там должна быть очень резкой, а это губительно для организмов.

Тот факт, что ни одной планетной системы типа Солнечной не обнаружили, вызвал пессимистические заявления некоторых ученых. Возможно, небольшие каменные планеты очень редки во Вселенной или наша Земля вообще единственная в своем роде, а возможно, нам просто не хватает точности измерений. Но надежда умирает последней, и астрономы продолжают оттачивать свои методы. Сейчас планеты ищут не прямым наблюдением, а по косвенным признакам, потому что не хватает разрешения телескопов. Так, положение юпитероподобных гигантов вычисляют по гравитационному возмущению, которое они оказывают на орбиты своих звезд. В 2006 году Европейское космическое агентство запустит спутник «Корот», который будет искать планеты земной массы, за счет уменьшения блеска звезды во время их прохождения по ее диску. Тем же способом охотиться за планетами будет спутник NASA «Кеплер», начиная с 2007 года. Еще через 2 года NASA организует миссию космической интерферометрии - очень чувствительный метод обнаружения маленьких планет по их воздействию на тела большей массы. Лишь к 2015 году ученые построят приборы для прямого наблюдения - это будет целая флотилия космических телескопов под названием «Охотник за планетами земного типа», способная одновременно искать признаки жизни.

Когда обнаружат подобные Земле планеты, в науке наступит новая эпоха, и ученые готовятся к этому событию уже сейчас. С огромного расстояния нужно суметь распознать в атмосфере планеты следы жизни, пусть даже самых примитивных ее форм - бактерий или простейших многоклеточных. Вероятность обнаружить примитивную жизнь во Вселенной выше, чем вступить в контакт с зелеными человечками, ведь на Земле жизнь существует более 4 миллиардов лет, из них на развитую цивилизацию приходится лишь одно столетие. До появления техногенных сигналов узнать о нашем существовании можно было только по наличию в атмосфере особых соединений - биомаркеров. Главный биомаркер - это озон, который указывает на присутствие кислорода. Пары воды означают наличие жидкой воды. Углекислый газ и метан выделяют некоторые виды организмов. Искать биомаркеры на далеких планетах поручат миссии «Дарвин», которую европейские ученые запустят в 2015 году. Шесть инфракрасных телескопов будут кружиться по орбите в 1,5 миллиона километров от Земли и обследовать несколько тысяч ближайших планетных систем. По количеству кислорода в атмосфере проект «Дарвин» способен определить совсем молодую жизнь, возрастом несколько сот миллионов лет.

Если в излучении атмосферы планеты есть спектральные линии трех веществ - озона, паров воды и метана - это дополнительное свидетельство в пользу наличия жизни. Следующий шаг - установить ее тип и степень ее развития. К примеру, присутствие молекул хлорофилла будет означать, что на планете есть бактерии и растения, которые используют фотосинтез для получения энергии. Разработка биомаркеров следующего поколения очень перспективная задача, но это еще далекое будущее.

Источник органики

Если на Земле не было условий для синтеза предбиологической органики, то они могли быть в космосе. Еще в 1961 году американский биохимик Джон Оро опубликовал статью о кометном происхождении органических молекул. Молодая Земля, не защищенная плотной атмосферой, подвергалась массированным бомбардировкам кометами, которые состоят в основном изо льда, но также содержат аммиак, формальдегид, цианид водорода, цианоацетилен, аденин и другие соединения, необходимые для абиогенного синтеза аминокислот, нуклеиновых и жирных кислот - основных компонентов клетки. По подсчетам астрономов, на поверхность Земли выпало 1 021 кг кометного вещества. Вода комет образовала океаны, где через сотни миллионов лет расцвела жизнь.

Наблюдения подтверждают, что в космических телах и межзвездных пылевых облаках есть простая органика и даже аминокислоты. Спектральный анализ показал наличие аденина и пурина в хвосте кометы Хейли-Боппа, а в метеорите Мерчисон нашли пиримидин. Образование этих соединений в условиях космоса не противоречит законам физики и химии.

Кометная гипотеза популярна среди космологов еще и тем, что она объясняет появление жизни на Земле после образования Луны. Как принято считать, примерно 4,5 миллиарда лет назад Земля столкнулась с огромным космическим телом. Ее поверхность расплавилась, часть вещества выплеснулась на орбиту, где из него образовался небольшой спутник - Луна. После такой катастрофы на планете не должно было остаться никакой органики и воды. Откуда же они появились? Их снова принесли кометы.

Проблема полимеров

Клеточные белки, ДНК, РНК - все это полимеры, очень длинные молекулы, наподобие нитей. Строение полимеров довольно простое, они состоят из частей, повторяющихся в определенном порядке. К примеру, целлюлоза - самая распространенная молекула в мире, которая входит в состав растений. Одна молекула целлюлозы состоит из десятков тысяч атомов углерода, водорода и кислорода, но вместе с тем это не что иное, как многократное повторение более коротких молекул глюкозы, сцепленных между собой, как в ожерелье. Белки - это цепь аминокислот. ДНК и РНК - последовательность нуклеотидов. Причем суммарно это очень длинные последовательности. Так, расшифрованный геном человека состоит из 3 миллиардов пар нуклеотидов.

В клетке полимеры производятся постоянно с помощью сложных матричных химических реакций. Чтобы получить белок, у одной аминокислоты нужно отсоединить гидроксильную группу OH с одного конца и атом водорода с другого, и только после этого «приклеить» следующую аминокислоту. Нетрудно видеть, что в этом процессе образуется вода, причем снова и снова. Освобождение от воды, дегидратация, - очень древний процесс, ключевой для зарождения жизни. Как он происходил, когда еще не было клетки с ее фабрикой по производству белков? Возникает проблема и с теплым мелким прудом - колыбелью живых систем. Ведь при полимеризации вода должна удаляться, но это невозможно, если ее полно вокруг.

Глиняный ген

В первичном бульоне должно было находиться нечто, что помогло родиться живой системе, ускорило процесс и снабдило энергией. Английский кристаллограф Джон Бернал в 50-х годах XX века предположил, что таким помощником могла служить обычная глина, которой в изобилии устлано дно любого водоема. Минералы глины способствовали образованию биополимеров и возникновению механизма наследственности. Гипотеза Бернала с годами окрепла и привлекла много последователей. Оказалось, что облученные ультрафиолетом глинистые частицы хранят полученный запас энергии, который расходуют на реакцию сборки биополимеров. В присутствии глины мономеры собираются в самореплицирующиеся молекулы, нечто вроде РНК.

Большинство глинистых минералов похоже по своей структуре на полимеры. Они состоят из огромного числа слоев, соединенных между собой слабыми химическими связями. Такая минеральная лента растет сама собой, каждый следующий слой повторяет предыдущий, а иногда случаются дефекты - мутации, как в настоящих генах. Шотландский химик А.Дж. Кернс-Смит утверждал, что первым организмом на Земле был именно «глиняный ген». Попадая между слоями глинистых частиц, органические молекулы взаимодействовали с ними, перенимали способ хранения информации и роста, можно сказать, обучались. Какое-то время минералы и протожизнь мирно сосуществовали, но вскоре произошел разрыв, или генетический захват, по Кернс-Смиту, после чего жизнь покинула минеральный дом и начала свое собственное развитие.

Самые древние микробы

В черных сланцах Западной Австралии возрастом 3,5 миллиарда лет сохранились остатки самых древних организмов, когда-либо обнаруженных на Земле. Видимые лишь под микроскопом шарики и волоконца принадлежат прокариотам - микробам, в клетке которых еще нет ядра и спираль ДНК уложена прямо в цитоплазме. Древнейшие окаменолости обнаружил в 1993 году американский палеобиолог Уильям Шопф. Вулканические и осадочные породы комплекса Пилбара, что к западу от Большой песчаной пустыни в Австралии - одни из самых старых пород на Земле. По счастливой случайности эти образования не столь сильно изменились под действием мощных геологических процессов и сохранили в прослоях остатки ранних существ.

Убедиться в том, что крохотные шарики и волоконца в прошлом были живыми организмами, оказалось трудно. Ряд мелких бусинок в горной породе может быть чем угодно: минералами, небиологической органикой, обманом зрения. Всего Шопф насчитал 11 видов окаменолостей, относящихся к прокариотам. Из них 6, по мнению ученого, - это цианобактерии, или синезеленые водоросли. Подобные виды до сих пор существуют на Земле в пресных водоемах и океанах, в горячих ключах и близ вулканов. Шопф насчитал шесть признаков, по которым подозрительные объекты в черных сланцах следует считать живыми.

Вот эти признаки:
1. Ископаемые сложены органической материей
2. У них сложное строение - волоконца состоят из клеток разной формы: цилиндров, коробочек, дисков
3. Объектов много - всего 200 ископаемых включают в себя 1 900 клеток
4. Объекты похожи друг на друга, как современные представители одной популяции
5. Это были организмы, хорошо приспособленные к условиям ранней Земли. Они обитали на дне моря, защищенные от ультрафиолета толстым слоем воды и слизи
6. Объекты размножались как современные бактерии, о чем говорят находки клеток в стадии деления.

Обнаружение столь древних цианобактерий означает, что почти 3,5 миллиарда лет назад существовали организмы, которые потребляли углекислый газ и производили кислород, умели скрываться от солнечной радиации и восстанавливаться после ранений, как это делают современные виды. Биосфера уже начала складываться. Для науки в этом кроется пикантный момент. Как признается Уильям Шопф, в столь почтенных породах он бы предпочел найти более примитивные создания. Ведь находка древнейших цианобактерий отодвигает начало жизни на период, стертый из геологической истории навсегда, вряд ли геологи когда-либо смогут его обнаружить и прочесть. Чем старше породы, тем дольше они пребывали под давлением, температурой, выветривались. Помимо Западной Австралии на планете сохранилось только одно место с очень древними породами, где могут встретиться окаменолости - на востоке Южной Африки в королевстве Свазиленд. Но африканские породы за миллиарды лет претерпели сильнейшие изменения, и следы древних организмов потерялись.

В настоящее время геологи не нашли начала жизни в горных породах Земли. Строго говоря, они вообще не могут назвать интервал времени, когда живых организмов еще не было. Не могут они и проследить ранние - до 3,5 миллиарда лет назад - этапы эволюции живого. Во многом из-за отсутствия геологических свидетельств тайна происхождения жизни остается нераскрытой.

Реалист и сюрреалист

Первая конференция Международного общества по изучению происхождения жизни (ISSOL) состоялась в 1973 году в Барселоне. Эмблему к этой конференции нарисовал Сальвадор Дали. Дело было так. Джон Оро, американский биохимик, был дружен с художником. В 1973 году они встретились в Париже, отобедали у «Максима» и отправились на лекцию по голографии. После лекции Дали неожиданно предложил ученому зайти на другой день к нему в отель. Оро пришел, и Дали вручил ему рисунок, символизирующий проблему хиральности в живых системах. Два кристалла растут из сочащейся лужи в виде перевернутых песочных часов, что намекает на конечное время эволюции. Слева сидит женская фигура, справа стоит мужчина и держит крыло бабочки, между кристаллами вьется червячок ДНК. Изображенные на рисунке левый и правый кристаллы кварца взяты из книги Опарина «Происхождение жизни на Земле» 1957 года. К удивлению ученого, Дали хранил эту книгу у себя в номере! После конференции супруги Опарины поехали в гости к Дали, на берег Каталонии. Обе знаменитости умирали от желания пообщаться. Между реалистом и сюрреалистом завязалась длинная беседа, оживленная языком мимики и жестов - ведь Опарин говорил только по-русски.

Мир РНК

В теории абиогенеза поиски первоначала жизни приводят к идее о более простой, нежели клетка, системе. Современная клетка необычайно сложна, ее работа держится на трех китах: ДНК, РНК и белки. ДНК хранит наследственную информацию, белки осуществляют химические реакции по схеме, заложенной в ДНК, информацию от ДНК к белкам передает РНК. Что может входить в упрощенную систему? Какая-то одна из составных частей клетки, которая умеет, как минимум, воспроизводить себя и регулировать обмен веществ.

Поиски наиболее древней молекулы, с которой, собственно, и началась жизнь, продолжаются почти столетие. Подобно геологам, восстанавливающим историю Земли по пластам горных пород, биологи открывают эволюцию жизни по строению клетки. Череда открытий XX века привела к гипотезе спонтанно зародившегося гена, который стал прародителем жизни. Естественно думать, что таким первогеном могла быть молекула ДНК, ведь она хранит информацию о своей структуре и об изменениях в ней. Постепенно выяснили, что ДНК не может сама передать информацию другим поколениям, для этого ей нужны помощники - РНК и белки. Когда во второй половине XX века открыли новые свойства РНК, то оказалось, что эта молекула больше подходит на главную роль в пьесе о происхождении жизни.

Молекула РНК проще по своему строению, чем ДНК. Она короче и состоит из одной нити. Эта молекула может служить катализатором, то есть проводить избирательные химические реакции, например соединять между собой аминокислоты, и в частности осуществлять собственную репликацию, то есть воспроизведение. Как известно, избирательная каталитическая активность - одно из основных свойств, присущих живым системам. В современных клетках эту функцию выполняют только белки. Возможно, эта способность перешла к ним со временем, а когда-то этим занималась РНК.

Чтобы выяснить, на что еще способна РНК, ученые стали разводить ее искусственно. В насыщенном молекулами РНК растворе кипит собственная жизнь. Обитатели обмениваются частями и воспроизводят сами себя, то есть идет передача информации потомкам. Спонтанный отбор молекул в такой колонии напоминает естественный отбор, а значит, им можно управлять. Как селекционеры выращивают новые породы животных, так же стали выращивать РНК с заданными свойствами. Например, молекулы, которые помогают сшивать нуклеотиды в длинные цепочки; молекулы, устойчивые к высокой температуре, и так далее.

Колонии молекул в чашках Петри - это и есть мир РНК, только искусственный. Натуральный мир РНК мог возникнуть 4 миллиарда лет назад в теплых лужах и мелких озерцах, где шло спонтанное размножение молекул. Постепенно молекулы стали собираться в сообщества и соревноваться между собой за место под солнцем, выживали наиболее приспособленные. Правда, передача информации в таких колониях происходит неточно, и вновь приобретенные признаки отдельной «особи» могут теряться, но этот недостаток покрывается большим количеством комбинаций. Отбор РНК шел очень быстро, и за полмиллиарда лет могла возникнуть клетка. Дав толчок возникновению жизни, мир РНК не исчез, он продолжает существовать внутри всех организмов на Земле.

Мир РНК - почти живой, до полного оживления ему остается всего один шаг - произвести клетку. Клетка отделена от окружающей среды прочной мембраной, значит, следующий этап эволюции мира РНК - заключение колоний, где молекулы связаны между собой родством, в жировую оболочку. Такая протоклетка могла получиться случайно, но, чтобы стать полноценной живой клеткой, мембрана должна была воспроизводиться от поколения к поколению. С помощью искусственного отбора в колонии можно вывести РНК, которая отвечает за рост мембраны, но произошло ли это на самом деле? Авторы экспериментов из Массачусетсского технологического института США подчеркивают, что результаты, полученные в лаборатории, не обязательно будут похожи на реальную сборку живой клетки, а может быть, и вовсе далеки от истины. Впрочем, создать живую клетку в пробирке пока не удалось. Мир РНК не раскрыл до конца своих тайн.

Трудно найти человека, который бы не задавался вопросом о том, как зародилась жизнь на Земле. Идей на этот счет предостаточно, от Библии и Дарвина до современной теории эволюции, которая непрерывно претерпевает изменения в соответствии с новейшими открытиями ученых.

Про динозавров, естественно, все слышали, видели их в фильмах и музеях, и мало кто оспаривает их историческое существование.

Хотя до 1842 года человечество даже и не догадывалось, что найденные в разных местах планеты кости гигантских животных принадлежали к одному типу, называя их “драконами” или приписывая останки титанам, которые сражались в Троянской войне. Понадобилось прозрение ученых, которые сопоставили данные и дали название диковинным останкам: динозавры. А сегодня мы прекрасно знаем, как выглядели эти вымершие миллионы лет назад исполинские ящеры, описали множество их видов, и каждый ребенок в курсе, кто они такие.

Тот факт, что эти гигантские пресмыкающиеся появились на Земле 225-250 миллионов лет назад и вымерли напрочь примерно 66 миллионов лет до нашего летоисчисления, не вводит в шок большинство простого народа, не интересующегося в деталях наукой. Естественно, мы также помним родственных динозаврам крокодилов, которые берут свое начало как вид 83 миллиона лет назад, и сумели выжить с тех незапамятных времен. Но все эти цифры редко соотносятся в нашем сознании в масштабе.

Сколько лет человечеству?

Не многим известен и возраст современного вида Homo Sapiens, что означает человек разумный, который ученые оценивают всего в 200 тысяч лет. То есть возраст человечества как вида в 1250 раз меньше, чем возраст класса рептилий, к которым принадлежали и динозавры.

Уместить в сознание и упорядочить эти данные необходимо, если мы хотим постигнуть, как появилась жизнь на нашей планете первоначально. И откуда взялись сами люди, которые сегодня пытаются понять эту жизнь?

Сегодня секретные материалы ученых стали достоянием публики. Шокирующая история экспериментов последних лет, которые переписали теорию эволюции и пролили свет на то, как началась жизнь на нашей планете, взорвали многолетние устоявшиеся догмы. Тайны генетики, обычно доступные лишь узкому кругу “посвященных”, дали однозначный ответ на предположение Дарвина.

Виду Homo Sapiens (человек разумный) всего 200 тысяч лет. А нашей планете 4,5 миллиарда!

Секретные материалы

Всего каких-то несколько столетий назад за подобные идеи можно было ожидать казни на костре. Джордано Бруно сожгли за ересь чуть больше 400 лет назад, в феврале 1600 года. Но сегодня подпольные исследования смелых первопроходцев стали достоянием общественности.

Еще 50 лет назад отцы по неведению частенько воспитывали детей других мужчин, даже сама мать не всегда знала правду. Сегодня же установить отцовство - рядовой анализ. Каждый из нас может заказать анализ ДНК и узнать, кто были его предки, чья кровь течет в его или ее жилах. След поколений навсегда запечатлен в генетическом коде.

Именно в этом коде и содержится ответ на самый животрепещущий вопрос, занимающий умы человечества: как началась жизнь?

Секретные материалы ученых раскрывают историю стремления найти единственно верный ответ. Это история об упорстве, настойчивости и потрясающей креативности, охватывающая величайшие открытия современной науки.

В своем стремлении понять, как зародилась жизнь, люди отправились на исследование самых дальних уголков планеты. В ходе этих поисков некоторые ученые получили клеймо «извергов» за свои эксперименты, а другим приходилось проводить их под пристальным вниманием тоталитарного строя.

Как же началась жизнь на Земле?

Пожалуй, это самый сложный из всех существующих вопросов. На протяжении тысячелетий абсолютное большинство людей объясняли это одним тезисом – «жизнь сотворили боги». Другие объяснения были попросту немыслимы. Но со временем ситуация изменилась. Весь прошлый век ученые пытались разобраться, каким же именно образом зародилась первая жизнь на планете, пишет Майкл Маршалл для BBC .

Большинство современных ученых, изучающих происхождение жизни, уверены, что они движутся в верном направлении – а проводимые эксперименты только закрепляют их уверенность. Открытия Ньютонов от генетики переписывают книгу знаний от первой страницы до последней.

  • Не так давно ученые обнаружили древнейшего предка человека , жившего на планете примерно 540 миллионов лет назад. Именно от этого “зубастого мешка” и произошли все позвоночные, считают исследователи. Размер общего предка был всего с миллиметр.
  • Современным исследователям даже удалось создать первый полусинтетический организм с фундаментальными изменениями в ДНК. Мы уже совсем рядом с синтезом новых белков, то есть полностью искусственной жизнью. Всего за какие-то пару столетий человечество сумело освоить создание нового типа живых организмов.
  • Не только мы создаем новые организмы, но и уверенно редактируем уже существующие. Ученые даже создали “программное обеспечение”, позволяющее с помощью клеточных инструментов редактировать цепочку ДНК . Кстати, всего 1% ДНК несет генетическую информацию, считают исследователи. Для чего же нужны остальные 99%?
  • ДНК настолько универсальна, что на ней можно хранить информацию, как на жёстком диске. На ДНК уже записали фильм и сумели скачать информацию обратно без проблем, как раньше брали файлы с дискеты.

Считаете себя образованным и современным человеком? Тогда вы просто обязаны это знать.

Хотя открытие ДНК датируется 1869 годом, только в 1986 эти знания впервые использовали в криминалистике.

Перед вами история зарождения жизни на Земле

Жизнь стара. Динозавры – это, пожалуй, наиболее известные из всех вымерших существ, но и они появились всего 250 миллионов лет назад. Первая же жизнь на планете зародилась намного раньше.

Самым древним окаменелостям, по оценкам экспертов, около 3,5 миллиардов лет. Иными словами, они в 14 раз старше первых динозавров!

Однако и это не предел. К примеру, в августе 2016 года были найдены ископаемые бактерии, возраст которых составляет 3,7 миллиардов лет. Это в 15 тысяч раз старше динозавров!

Сама Земля ненамного старше этих бактерий – наша планета окончательно сформировалась около 4,5 миллиардов лет назад. То есть первая жизнь на Земле зародилась довольно “быстро”, уже через каких-то 800 миллионов лет на планете существовали бактерии – живые организмы, которые, согласно ученым, сумели с течением времени усложниться и положить начало сперва простым организмам в океане, а в конце-концов, и самому человеческому роду.

Недавнее сообщение из Канады дает подтверждение этим данным: возраст самых старейших бактерий оценивается от 3,770 до 4,300 миллиардов лет. То есть жизнь на нашей планете, вполне возможно, зародилась “каких-то” 200 миллионов лет после ее образования. Найденные микроорганизмы жили на железе. Останки их были найдены в кварцевых породах.

Если допустить, что жизнь зародилась на Земле – что звучит разумно, учитывая, что на других космических телах мы ее еще пока не нашли, ни на других планетах, ни на осколках занесенных из космоса метеоритов, – то произойти это должно было в том временном промежутке, который охватывает миллиард лет между моментом, когда планета окончательно сформировалась, и датой появления найденных в наше время окаменелостей.

Итак, сузив интересующий нас период времени, опираясь на последние исследования, можно предположить, какой именно была первая жизнь на Земле.

Ученые воссоздали облик доисторических гигантов по скелетам, найденным при раскопках.

Каждый живой организм состоит из клеток (и вы тоже)

Еще в 19-м веке биологи установили, что все живые организмы состоят из «клеток» – крошечных сгустков органической материи различных форм и размеров.

Впервые клетки были обнаружены еще в 17-м веке – одновременно с изобретением относительно мощных микроскопов, но лишь спустя полтора века ученые пришли к единому выводу: клетки – это основа всей жизни на планете.

Разумеется, внешне человек не похож ни на рыб, ни на динозавров, но достаточно лишь взглянуть в микроскоп, чтобы убедиться, что люди состоят практически из тех же клеток, что и представители животного мира. Более того, те же клетки лежат в основе растений и грибов.

Все организмы состоят из клеток, включая вас.

Самая многочисленная форма жизни – одноклеточные бактерии

На сегодняшний день самыми многочисленными формами жизни можно смело назвать микроорганизмы, каждый из которых состоит лишь из одной единственной клетки.

Самый известный вид подобной жизни – это бактерии, обитающие в любой точке земного шара.

В апреле 2016 года ученые представили обновленную версию «древа жизни»: своего рода генеалогического древа для каждого вида живых организмов. Абсолютное большинство «ветвей» этого дерева занимают бактерии. Более того, форма дерева позволяет предположить, что предком всей жизни на Земле была бактерия. Иными словами, все многообразие живых организмов (в том числе и вы) произошло от одной-единственной бактерии.

Таким образом, мы можем точнее подойти к вопросу зарождения жизни. Чтобы воссоздать ту самую первоклетку, нужно максимально точно воссоздать условия, царившие на планете более 3,5 миллиардов лет назад.

Так насколько же это трудно?

Одноклеточные бактерии - самая распространенная форма жизни на Земле.

Начало экспериментов

На протяжении многих веков вопрос «с чего началась жизнь?» практически не задавался всерьез. Ведь, как мы уже вспомнили в самом начале, ответ был известен: жизнь создана Создателем.

Вплоть до 19-го века большинство людей верили в «витализм». Это учение основано на идее о том, что все живые существа наделены особой, сверхъестественной силой, отличающей их от неодушевленных предметов.

Идеи витализма часто перекликались с религиозными постулатами. В Библии говорится, что Бог с помощью «дыхания жизни» оживил первых людей, и что бессмертная душа – это одно из проявлений витализма.

Но есть одна проблема. Идеи витализма в корне неверны.

К началу 19-го века ученые обнаружили несколько веществ, которые имелись в наличии исключительно у живых существ. Одним из таких веществ была мочевина, содержащаяся в урине, и получить ее удалось в 1799 году.

Данное открытие, тем не менее, не противоречило концепции витализма. Мочевина появлялась лишь в живых организмах, так что, возможно, они были наделены особой жизненной энергией, которая и делала их уникальными.

Смерть витализма

Но в 1828 году немецкий химик Фридрих Вёлер сумел синтезировать мочевину из неорганического соединения – цианата аммония, который никак не был связан с живыми существами. Его эксперимент смогли повторить другие ученые, и вскоре стало ясно, что все органические соединения можно получить из более простых – неорганических.

Это положило конец витализму как научной концепции.

Но избавиться от своих убеждений людям было довольно тяжело. Факт того, что в органических соединениях, свойственных только живым существам, на самом деле нет ничего особенного, для многих словно лишил жизнь элемента волшебства, превратив людей из божественных созданий чуть ли не в машины. Разумеется, это сильно противоречило Библии.

Даже некоторые ученые продолжали бороться за витализм. В 1913 году английский биохимик Бенджамин Мур горячо продвигал свою теорию «биотической энергии», которая, по сути, была тем же витализмом, но в другой обложке. Идея витализма нашла довольно прочные корни в человеческой душе на эмоциональном уровне.

Сегодня же ее отражения можно найти в самых неожиданных местах. Взять, к примеру, ряд научно-фантастических историй, в которых «жизненную энергию» персонажа можно пополнить или выкачать. Вспомните «энергию регенерации», которой пользовалась раса Повелителей Времени из сериала «Доктор Кто». Данную энергию можно было пополнять, если она подходила к концу. Хотя идея и выглядит футуристически, но на деле это отражение старомодных теорий.

Таким образом, после 1828 года у ученых, наконец, появились веские причины искать новое объяснение зарождению жизни, на этот раз отбросив домыслы о божественном вмешательстве.

Но искать они не начали. Казалось бы, тема исследований напросилась сама собой, но на деле к загадке происхождения жизни не подступались еще несколько десятилетий. Возможно, все по-прежнему были слишком привязаны к витализму, чтобы двигаться дальше.

Химик Фридрих Вёлер сумел синтезировать мочевину - органическое соединение - из неорганических веществ.

Дарвин и теория эволюции

Главным прорывом в области биологических исследований 19-го века стала теория эволюции, разработанная Чарльзом Дарвином и продолженная другими учеными.

Теория Дарвина, изложенная в работе «Происхождение видов» 1859 года, объясняла, каким образом все многообразие животного мира появилось от одного единого предка.

Дарвин утверждал, что Бог не создавал каждый вид живых существ по отдельности, а все эти виды происходят от первобытного организма, появившегося миллионы лет назад, который также называют последним универсальным общим предком.

Идея оказалась крайне противоречивой, опять же потому, что опровергала библейские постулаты. Теория Дарвина подверглась яростной критике, в частности, от оскорбленных христиан.

Но в теории эволюции не говорилось ни слова о том, как появился самый первый организм.

Как же появилась первая жизнь?

Дарвин понимал, что это основательный вопрос, но (возможно, не желая вступать в очередной конфликт с духовенством) затронул он его лишь в письме 1871 года. Эмоциональный тон письма показывал, что ученый осознавал все глубокое значение данного вопроса:

«…Но если бы сейчас [ах, какое большое если!] в каком-либо теплом водоеме, содержащем все необходимые соли аммония и фосфора и доступном воздействию света, тепла, электричества и т. п., химически образовался белок, способный к дальнейшим все более сложным превращениям…»

Иными словами: представьте себе небольшой водоем, наполненный простыми органическими соединениями и находящийся под солнцем. Некоторые из соединений вполне могут начать взаимодействовать, создавая более сложные вещества, вроде белка, которые, в свою очередь, также будут взаимодействовать и развиваться.

Идея была довольно поверхностной. Но, тем не менее, она легла в основу первых гипотез о происхождении жизни.

Дарвин не только создал теорию эволюции, но и предположил, что жизнь зародилась в теплой воде, насыщенной необходимыми неорганическими соединениями.

Революционные идеи Александра Опарина

И первые шаги в этом направлении были сделаны совсем не там, где вы могли бы ожидать. Вы, возможно, думаете, что такие исследования, подразумевающие свободу мысли, должны были проводиться в Великобритании или США, к примеру. Но на самом деле первые гипотезы о происхождении жизни были выдвинуты на родных просторах сталинского СССР, ученым, имя которого вы, вероятно, никогда не слышали.

Известно, что Сталин закрывал многие исследования в сфере генетики. Вместо этого он пропагандировал идеи агронома Трофима Лысенко, которые, как ему казалось, больше подходили для коммунистической идеологии. Ученые, проводившие исследования в сфере генетики, обязаны были публично поддерживать идеи Лысенко, в противном случае рискуя оказаться в лагерях.

Именно в такой напряженной обстановке приходилось проводить свои опыты биохимику Александру Ивановичу Опарину. Это было возможным потому, что он зарекомендовал себя надежным коммунистом: поддерживал идеи Лысенко и даже получил орден Ленина – самую почетную награду из всех существовавших в то время.

Советский биохимик Александр Опарин предположил, что первые живые организмы сформировались как коацерваты.

Новая теория возникновения первой жизни на земле

Опарин описывал, что собой представляла Земля в первые дни после своего формирования. Планета имела обжигающе горячую поверхность и притягивала небольшие метеориты. Кругом были лишь наполовину расплавленные камни, в которых содержался огромный спектр химических веществ, многие из них основывались на углероде.

В конце концов Земля достаточно остыла, и испарения впервые превратились в жидкую воду, создав таким образом первый дождь. Через некоторое время на планете появились горячие океаны, которые были богаты химическими веществами, основанными на углероде. Далее события могли развиваться по двум сценариям.

Первый подразумевал взаимодействие веществ, при котором появлялись бы более сложные соединения. Опарин предположил, что важные для живых организмов сахар и аминокислоты могли сформироваться в водяном бассейне планеты.

При втором сценарии некоторые вещества при взаимодействии начинали формировать микроскопические структуры. Как известно, многие органические соединения не растворяются в воде: к примеру, масло формирует слой на поверхности воды. Но некоторые вещества при контакте с водой образуют сферические глобулы, или «коацерваты», диаметром до 0,01 см (или 0,004 дюйма).

Наблюдая за коацерватами под микроскопом, можно заметить их сходство с живыми клетками. Они растут, меняют форму и иногда делятся на две части. Они также взаимодействуют с окружающими соединениями, так что внутри них могут концентрироваться другие вещества. Опарин предположил, что коацерваты были предками современных клеток.

Теория первой жизни Джона Холдейна

Спустя пять лет, в 1929 году английский биолог Джон Бёрдон Сандерсон Холдейн независимо выдвинул свою теорию со схожими идеями, которая была опубликована в журнале «Rationalist Annual».

Холдейн к тому моменту уже внес огромный вклад в развитие теории эволюции, способствуя интеграции идей Дарвина в науку о генетике.

И человеком он был весьма запоминающимся. Однажды в ходе эксперимента в декомпрессионной камере он пережил разрыв барабанной перепонки, о чем позже написал следующее: “Перепонка уже заживает, и даже если в ней останется отверстие, то, несмотря на глухоту, оттуда можно будет задумчиво выпускать колечки табачного дыма, что я считаю важным достижением”.

Как и Опарин, Холдейн предположил, каким именно образом в воде могли взаимодействовать органические соединения: «(ранее) первые океаны достигли консистенции горячего бульона». Это создало условия для появления «первых живых или наполовину живых организмов». В этих же условиях простейшие организмы могли оказаться внутри «масляной пленки».

Джон Холдейн, независимо от Опарина, выдвинул схожие идеи о зарождении первых организмов.

Гипотеза Опарина-Холдейна

Таким образом, первыми биологами, выдвинувшими данную теорию, стали Опарин и Холдейн. Но мысль о том, что в формировании живых организмов не участвовал Бог или даже некая абстрактная «жизненная сила», была радикальной. Как и теория эволюции Дарвина, эта мысль была пощечиной для христианства.

Власть СССР этот факт полностью устраивал. При советском режиме в стране царил атеизм, а власть с радостью поддерживала материалистические объяснения таких сложных явлений, как жизнь. Кстати, Холдейн тоже был атеистом и коммунистом.

«В те времена на эту идею смотрели исключительно через призму собственных убеждений: религиозные люди воспринимали ее в штыки в отличие от сторонников коммунистических идей», рассказывает Армен Мулкиджанян, эксперт по вопросам происхождения жизни в Оснабрюкском университете Германии. «В Советском Союзе эту идею приняли с радостью, поскольку им не нужен был Бог. А на Западе ее разделяли все те же сторонники левых взглядов, коммунисты и т.д.»

Концепцию того, что жизнь сформировалась в «первичном бульоне» из органических соединений, называют гипотезой Опарина-Холдейна . Она выглядела достаточно убедительно, но была одна проблема. На тот момент не было проведено ни одного практического эксперимента, который доказал бы правдивость этой гипотезы.

Начались такие опыты только спустя почти четверть века.

Первые экперименты по созданию жизни “в пробирке”

Вопросом происхождения жизни заинтересовался Гарольд Юри, знаменитый ученый, уже получивший к тому времени Нобелевскую премию по химии в 1934 году и даже принявший участие в создании атомной бомбы.

В ходе Второй мировой войны Юри участвовал в Манхэттенском проекте, занимаясь сбором нестабильного урана-235, необходимого для ядра бомбы. После окончания войны Юри выступал за гражданский контроль над ядерными технологиями.

Юри заинтересовался химическими явлениями, происходящими в открытом космосе. А наибольший интерес для него представляли процессы, происходившие в период формирования Солнечной системы. На одной из своих лекций он указал, что в первое время на Земле, скорее всего, не было кислорода. И эти условия были идеальными для формирования «первичного бульона», о котором говорили Опарин и Холдейн, поскольку некоторые из необходимых веществ были настолько слабыми, что растворились бы при контакте с кислородом.

На лекции присутствовал студент докторантуры по имени Стэнли Миллер, который обратился к Юри с предложением провести эксперимент, основанный на этой идее. Поначалу Юри отнесся к идее скептически, но позже Миллер сумел его уговорить.

В 1952 году Миллер провел самый знаменитый эксперимент из всех, что были связаны с объяснением происхождения жизни на Земле.

Эксперимент Стэнли Миллера стал самым известным в истории изучения зарождения живых организмов на нашей планете.

Самый знаменитый эксперимент о происхождении жизни на Земле

Подготовка не заняла много времени. Миллер соединил ряд стеклянных колб, по которым циркулировали 4 вещества, предположительно существовавших на ранней Земле: кипящая вода, водород, аммиак и метан. Газы подвергались систематическим искровым разрядам – это была симуляция ударов молний, которые были привычным явлением на ранней Земле.

Миллер обнаружил, что «вода в колбе заметно порозовела после первого дня, а после первой недели раствор помутнел и приобрел темно-красный цвет». Налицо было формирование новых химических соединений.

Когда Миллер проанализировал состав раствора, он обнаружил, что в нем содержатся две аминокислоты: глицин и аланин. Как известно, аминокислоты часто описываются как строительные блоки жизни. Эти аминокислоты используются в формировании белков, которые контролируют большинство биохимических процессов в нашем организме. Миллер буквально создал с нуля два самых важных компонента живого организма.

В 1953 году результаты опыта были опубликованы в престижном журнале «Science». Юри благородным, хотя и не свойственным ученым его возраста, жестом убрал свое имя из заголовка, оставив всю славу Миллеру. Но несмотря на это, исследование обычно называют «Экспериментом Миллера-Юри».

Значимость экперимента Миллера-Юри

«Ценность эксперимента Миллера-Юри заключается в том, что он показывает, что даже в простой атмосфере может быть образовано множество биологических молекул», говорит Джон Сазерленд, ученый из Кембриджской лаборатории молекулярной биологии.

Не все детали эксперимента были точны, как выяснилось позже. На самом деле исследования показали, что в атмосфере ранней Земли находились другие газы. Но это никак не умаляет значимость эксперимента.

«Это был знаковый эксперимент, потрясший воображение многих, и именно поэтому на него ссылаются и по сей день», говорит Сазерленд.

В свете эксперимента Миллера многие ученые начали искать способы создания простых биологических молекул с нуля. Ответ на вопрос «Как началась жизнь на Земле?», казалось, был совсем рядом.

Но затем оказалось, что жизнь куда сложнее, чем можно себе представить. Живые клетки, как выяснилось, это не просто набор химических соединений, а сложные маленькие механизмы. Внезапно создание живых клеток с нуля превратилось в куда более серьезную проблему, чем того ожидали ученые.

Изучение генов и ДНК

К началу 50-х годов 20-го века ученые уже далеко отошли от мысли, что жизнь была подарком богов.

Вместо этого они начали изучать возможность стихийного и естественного возникновения жизни на ранней Земле – и, благодаря знаковому эксперименту Стэнли Миллера, у этой идеи начали появляться доказательства.

Пока Миллер пытался создавать жизнь с нуля, другие ученые разбирались, из чего состоят гены.

К этому моменту уже было изучено большинство биологических молекул. К ним относятся сахар, жиры, белки и нуклеиновые кислоты, вроде “дезоксирибонуклеиновой кислоты” – она же ДНК.

Сегодня все знают, что в ДНК содержатся наши гены, но для биологов 1950-х годов это было настоящим шоком.

Белки имели более сложную структуру, из-за чего ученые полагали, что генная информация содержится именно в них.

Теория была опровергнута в 1952 году учеными из Института Карнеги – Алфредом Херши и Мартой Чейз. Они изучали простые вирусы, состоящие из белка и ДНК, которые размножались путем заражения других бактерий. Ученые выяснили, что в бактерии проникает вирусная ДНК, а не белок. Из этого был сделан вывод, что ДНК представляет собой генетический материал.

Открытие Херши и Чейз стало началом гонки, целью которой было изучение структуры ДНК и принципов ее работы.

Марта Чейз и Алфред Херши открыли, что ДНК несет генетическую информацию.

Спиральная стуктура ДНК - одно из важнейших открытий 20 века

Первыми к решению вопроса пришли Фрэнсис Крик и Джеймс Уотсон из Кембриджского университета, не без неодооцененной помощи своей коллеги, Розалинд Франклин. Произошло это через год после опытов Херши и Чейз.

Их открытие стало одним из важнейших в 20-м веке. Это открытие изменило взгляд на поиски истоков происхождения жизни, раскрывая невероятно сложное устройство живых клеток.

Уотсон и Крик обнаружили, что ДНК представляет собой двойную спираль (двойной винт), которая похожа на изогнутую лестницу. Каждый из двух «полюсов» этой лестницы состоит из молекул, называемых нуклеотидами.

Данная структура дает понять, каким образом клетки копируют свою ДНК. Иными словами, становится понятно, как родители передают копии своих генов детям.

Важно понять, что двойную спираль можно «развязать». Это откроет доступ к генетическому коду, состоящему из последовательности генетических оснований (A, T, C и G), обычно заключенному внутри «ступеней» лестницы ДНК. Каждая нить затем используется как шаблон при создании копии другой.

Этот механизм позволяет генам передаваться по наследству с самого возникновения жизни. Ваши собственные гены в конечном итоге берут свое начало у древней бактерии – и при каждой их передаче использовался тот самый механизм, что обнаружили Крик и Уотсон.

Перед общественностью впервые раскрылась одна из самых сокровенных тайн жизни.

Структура ДНК: 2 остова (антипараллельные цепочки) и пары нукледотидов.

Задача ДНК

Как выяснилось, задача у ДНК всего одна. Ваша ДНК сообщает клеткам вашего тела, как нужно создавать белки (протеины) – молекулы, выполняющие множество важных задач.

Без белков вы не смогли бы переваривать пищу, ваше сердце перестало бы биться, а дыхание остановилось бы.

Но воссоздание процесса формирования белков при помощи ДНК на деле оказалось ошеломительно трудной задачей. Каждый, кто пытался объяснить происхождение жизни, просто не мог понять, как нечто настолько сложное вообще могло самостоятельно появиться и развиться.

Каждый белок – это по сути длинная цепь аминокислот, сплетенных в определенном порядке. Этот порядок определяет трехмерную форму белка и, следовательно, его предназначение.

Данная информация кодируется в последовательности оснований ДНК. Так что, когда клетке необходимо создать конкретный белок, она считывает соответствующий ген в ДНК, чтобы построить потом заданную последовательность аминокислот.

Что такое РНК?

В процессе использования ДНК клетками один нюанс.

  • ДНК – это самый драгоценный ресурс клетки. Поэтому клетки предпочитают не обращаться к ДНК при каждом действии.
  • Вместо этого клетки копируют информацию из ДНК в малые молекулы другого вещества под названием РНК (рибонуклеиновая кислота) .
  • РНК похожа на ДНК, однако у нее всего одна цепочка.

Если провести аналогию между ДНК и библиотечной книгой, то РНК здесь будет выглядеть как страничка с кратким содержанием книги.

Процесс преобразования информации через цепь РНК в белок завершается при помощи очень сложной молекулы под названием «рибосома».

Данный процесс происходит в каждой живой клетке, даже в самых простейших бактериях. Для поддержания жизни он важен так же, как пища и дыхание.

Таким образом, любое объяснение появления жизни обязано показать, как появилось и как начало работать сложное трио, куда входят ДНК, РНК и рибосомы .

Разница между ДНК и РНК.

Все гораздо сложнее

Теории Опарина и Холдейна теперь казались наивными и простыми, а эксперимент Миллера, в ходе которого было создано несколько аминокислот, необходимых для формирования белка, выглядел дилетантским. На длинном пути к созданию жизни его исследование, пусть и продуктивное, явно было лишь первым шагом.

«ДНК заставляет РНК делать белок, и все это в закрытом мешочке химических веществ», - говорит Джон Сазерленд. - «Вы смотрите на это и поражаетесь, насколько это сложно. Что нам сделать, чтобы найти органическое соединение, которое будет делать все это за один раз?»

Возможно, жизнь началась с РНК?

Первым на этот вопрос попытался ответить британский химик по имени Лесли Орджел. Он одним из первых увидел модель ДНК, созданную Криком и Уотсоном, а позже помогал НАСА в рамках программы «Викинг», в ходе которой на Марс были отправлены посадочные модули.

Орджел намеревался упростить задачу. В 1968 году при поддержке Крика он предположил, что в первых живых клетках не было ни белков, ни ДНК. Напротив, они практически целиком состояли из РНК. В этом случае первичные молекулы РНК должны были быть универсальными. К примеру, им необходимо было создавать собственные копии, вероятно, используя тот же механизм образования пар, что и ДНК.

Мысль о том, что жизнь началась с РНК, оказала невероятное влияние на все дальнейшие исследования. И стала причиной ожесточенных дебатов в научном сообществе, не утихающих и по сей день.

Допуская, что жизнь началась с РНК и еще одного некоего элемента, Орджел предположил, что один из важнейших аспектов жизни – способность самовоспроизведения – появился раньше прочих. Можно сказать, что он размышлял не только о том, как впервые появилась жизнь, а говорил о самой сути жизни.

Многие биологи согласились с идеей Орджела о том, что «воспроизведение было первым». В теории эволюции Дарвина способность к продолжению рода стоит во главе угла: это единственный способ для организма «выиграть» в этой гонке – то есть, оставить после себя многочисленных детей.

Лесли Орджел выдвинул идею, что первые клетки функционировали на основе РНК.

Разделение на 3 лагеря

Но для жизни характерны и другие особенности, при этом в равной степени важные.

Самая очевидная из них – метаболизм: способность поглощать окружающую энергию и использовать ее для выживания.

Для многих биологов метаболизм является определяющей характеристикой жизни, способность воспроизведения они ставят на второе место.

Итак, начиная с 1960-х годов, ученые, бьющиеся над загадкой происхождения жизни, начали делиться на 2 лагеря.

«Первый утверждал, что метаболизм появился раньше генетики, второй придерживался обратного мнения», объясняет Сазерленд.

Существовала и третья группа, утверждающая, что сначала должен был появиться некий контейнер для ключевых молекул, который не позволял бы им распадаться.

«Компартментализация должна была появиться первой, потому что без нее метаболизм клеток теряет всякий смысл», поясняет Сазерленд.

Иными словами, у истоков жизни должна была стоять клетка, как это уже подчеркнули Опарин и Холдейн за несколько десятков лет до этого, и, возможно, эта клетка должна была быть покрыта простыми жирами и липидами.

Каждая из трех идей обзавелась своими сторонниками и дожила до наших дней. Ученые порой забывали о хладнокровном профессионализме и слепо поддерживали одну из трех идей.

В результате, научные конференции по данному вопросу зачастую сопровождались скандалами, а журналисты, освещающие эти события, часто слышали нелицеприятные отзывы ученых одного лагеря о работе своих коллег из двух других.

Благодаря Орджелу, мысль о том, что жизнь началась с РНК, приблизила общественность еще на шаг вперед к разгадке.

А в 1980-х годах произошло потрясающее открытие, которое фактически подтвердило гипотезу Орджела.

Что было первым: контейнер, метаболизм или генетика?

Итак, в конце 1960-х годов в поисках ответа на загадку происхождения жизни на планете ученые разделились на 3 лагеря.

  1. Первые были уверены, что жизнь началась с формирования примитивных версий биологических клеток.
  2. Вторые полагали, что первым и ключевым шагом была система метаболизма.
  3. Третьи же сфокусировались на важности генетики и воспроизведения (репликации).

Этот третий лагерь пытался понять, как мог выглядеть самый первый репликатор, держа в уме идею, что репликатор должен состоять из РНК.

Многоликая РНК

К 1960-м годам у ученых накопилось немало причин полагать, что РНК была источником всей жизни.

К этим причинам относился тот факт, что РНК могла делать то, чего не могла ДНК.

Будучи одноцепочной молекулой, РНК могла сгибаться, придавая себе различные формы, что было недоступно для жесткой ДНК с двумя цепями.

Складывающаяся словно оригами РНК сильно напоминала своим поведением белки. Ведь белки – это по сути такие же длинные цепочки, но состоящие из аминокислот, а не нуклеотидов, что позволяет им создавать более сложные структуры.

Это и есть ключ к самой поразительной способности белков. Некоторые белки могут ускорять, или «катализировать», химические реакции. Эти белки называют ферментами.

Например, в человеческих кишках содержится немало ферментов, разбивающих сложные молекулы еды на простые (вроде сахара) – то есть такие, которые в дальнейшем используются нашими клетками. Жить без ферментов было бы попросту невозможно. Например, недавняя смерть сводного брата корейского лидера в аэропорту Малайзии была вывана тем, что в его организме прекратил функционировать фермент (энзим), действие которого подавляет нервный реагент VX - в результате, парализуется работа системы дыхания и человек умирает в течение нескольких минут. Настолько важны для работы нашего организма ферменты.

Лесли Орджел и Фрэнсис Крик выдвинули очередную гипотезу. Если РНК могла складываться, как это делали белки, то могла ли она формировать еще и ферменты?

Если бы это оказалось так, то РНК могла бы быть оригинальной – и крайне универсальной – живой молекулой, хранящей информацию (как это делает ДНК) и катализирующей реакции, что свойственно некоторым белкам.

Идея была интересной, но за следующие 10 лет доказательств в ее поддержку так и не было найдено.

Ферменты РНК

Томас Чек родился и вырос в Айове. Еще в детстве его страстью были камни и минералы. И уже в старших классах школы он был постоянным гостем у геологов местного университета, которые показывали ему модели минеральных структур. В конце концов он стал биохимиком, сосредоточившись на изучении РНК.

В начале 1980-х годов Чек и его коллеги из Колорадского университета в Боулдере изучали одноклеточный организм под названием «Tetrahymena thermophile». Часть этого клеточного организма включала в себя цепи РНК. Чек заметил, что один из сегментов РНК иногда отделяется от прочих, словно его отделили ножницами.

Когда его команда исключила все ферменты и другие молекулы, которые могли выступать в роли молекулярных ножниц, РНК по-прежнему продолжала изолировать этот сегмент. Тогда же был обнаружен первый фермент РНК: маленький сегмент РНК, способный самостоятельно отделяться от крупной цепи, к которой он был присоединен.

Поскольку два фермента РНК нашли относительно быстро, ученые предположили, что их на самом деле может быть намного больше. Теперь все больше фактов говорило в пользу того, что жизнь началась с РНК.

Томас Чек нашел первый фермент РНК.

Мир РНК

Первым, кто дал имя данной концепции стал Уолтер Гилберт.

Будучи физиком, который неожиданно заинтересовался молекулярной биологией, Гилберт одним из первых выступил в защиту теории о секвенировании генома человека.

В 1986 году в своей статье в журнале «Nature» Гилберт предположил, что жизнь началась в так называемом «Мире РНК».

Первый этап эволюции, по словам Гилберта, состоял из «процесса, в ходе которого молекулы РНК выполняли роль катализаторов, собирая себя в бульоне из нуклеотидов».

Копируя и вставляя различные фрагменты РНК в общую цепь, молекулы РНК создавали более полезные цепочки на основе имеющихся. В итоге настал момент, когда они научились создавать белки и белковые ферменты, которые оказались намного полезнее РНК-версий, по большей части вытеснив их и дав начало той жизни, которую мы наблюдаем сегодня.

«Мир РНК» – это довольной изящный способ создания сложных живых организмов с нуля.

В этой концепции не нужно полагаться на одновременное формирование десятков биологических молекул в «первичном бульоне», достаточно будет одной-единственной молекулы, с которой все и началось.

Доказательства

В 2000 году гипотеза о «Мире РНК» обрела солидные доказательства.

Томас Стейц провел 30 лет, изучая структуры молекул в живых клетках. В 90-е годы он приступил к главному исследованию своей жизни: изучению структуры рибосомы.

В каждой живой клетке присутствует рибосома. Эта крупная молекула считывает инструкции из РНК и соединяет аминокислоты для создания белков. Рибосомы в клетках человека выстраивают практически каждый кусочек тела.

К тому моменту уже было известно, что рибосома содержит РНК. Но в 2000 году команда Стейца представила детализированную модель структуры рибосомы, в которой РНК предстала в роли каталитического ядра рибосомы.

Это открытие было серьезным, особенно учитывая, насколько древней и фундаментально важной для жизни считалась рибосома. Факт того, что настолько важный механизм был основан на РНК, сделал теорию «Мира РНК» намного правдоподобней в научных кругах. Больше всего открытию радовались сторонники концепции «Мира РНК», а Стейц в 2009 году получил Нобелевскую премию.

Но после этого у ученых начали появляться сомнения.

Проблемы теории “Мира РНК”

В теории «Мира РНК» изначально было две проблемы.

Во-первых, могла ли РНК на самом деле выполнять все жизненно важные функции? И могла ли она сформироваться в условиях ранней Земли?

Прошло уже 30 лет с момента создания Гилбертом теории «Мира РНК», а у нас по-прежнему нет исчерпывающих доказательств того, что РНК действительно способна на все, что описано в теории. Да, это удивительно функциональная молекула, но достаточно ли одной РНК для всех приписываемых ей функций?

В глаза бросалась одна несостыковка. Если жизнь началась с молекулы РНК, то, значит, РНК умеет создавать свои копии, или реплики.

Но этой способности нет ни у одной из всех известных РНК. Для создания точной копии фрагмента РНК или ДНК необходимо множество ферментов и других молекул.

Поэтому в конце 80-х годов группа биологов начала довольно отчаянные исследования. Они намеревались создать РНК, способную к саморепликации.

Попытки создать самовоспроизводящуюся РНК

Джек Шостак из Гарвардской медицинской школы был первым из этих исследователей. С раннего детства он был настолько увлечен химией, что даже превратил свой подвал в лабораторию. К своей безопасности он относился с пренебрежением, что однажды привело к взрыву, который пригвоздил стеклянную колбу к потолку.

В начале 80-х Шостак наглядно продемонстрировал, как человеческие гены защищают себя от процесса старения. Это раннее исследование позднее приведет его в число лауреатов Нобелевской премии.

Но вскоре он проникся исследованиями Чека, связанными с ферментами РНК. «Я считаю, что это невероятная работа», – говорит Шостак. – «В принципе, весьма вероятно, что РНК может служить катализатором для создания собственных копий».

В 1988 году Чек обнаружил фермент РНК, способный формировать малую молекулу РНК длиной в 10 нуклеотидов.

Шостак же решил пойти дальше и создать новые ферменты РНК в лаборатории. Его команда создала набор случайных последовательностей и протестировала каждую, чтобы найти хотя бы одну, которая обладала бы способностями катализатора. Далее последовательности менялись, и тест продолжался.

После 10 попыток Шостак сумел создать фермент РНК, который в роли катализатора ускорял реакцию в 7 миллионов раз быстрее, чем это происходит в естественной среде.

Команда Шостака доказала, что ферменты РНК могут быть крайне мощными. Но их фермент не мог создавать свои реплики. Это был тупик для Шостака.

Фермент R18

В 2001 году следующий прорыв совершил бывший ученик Шостака – Дэвид Бартель из Массачусетского технологического института в Кембридже.

Бартель создал фермент РНК под названием R18, который мог добавлять новые нуклеотиды в цепочку РНК на основе уже существующих.

Другими словами, фермент не просто добавлял случайные нуклеотиды, а точно копировал последовательность.

До самовоспроизводящихся молекул было еще далеко, но направление было верным.

Фермент R18 состоял из цепочки, куда входило 189 нуклеотидов, и мог добавлять в нее еще 11 – то есть, 6% от своей длины. Исследователи надеялись, что еще через несколько опытов эти 6% удастся превратить в 100%.

Самым удачливым на этом поле оказался Филипп Холлигер из Лаборатории молекулярной биологии в Кембридже. В 2011 году его команда модифицировала фермент R18, создав фермент tC19Z, который мог копировать последовательность до 95 нуклеотидов. Это составляло 48% его длины – больше, чем у R18, но явно не необходимые 100%.

Джеральд Джойс и Трэйси Линкольн из Исследовательского института Скриппса в Ла-Холья представили альтернативный подход к вопросу. В 2009 году они создали фермент РНК, который создает свою реплику косвенно.

Их фермент объединяет два коротких фрагмента РНК и создает другой фермент. Тот, в свою очередь, объединяет два других фрагмента РНК, чтобы воссоздать оригинальный фермент.

При наличии исходных материалов этот простой цикл может продолжаться бесконечно. Но ферменты работают должным образом, только если есть нужные цепи РНК, созданные Джойсом и Линкольн.

Для многих ученых, относящихся скептически к идее «Мира РНК», отсутствие самостоятельной репликации РНК – это главная причина скепсиса. РНК попросту не справляется с ролью создателя всей жизни.

Не добавляют оптимизма и неудачи химиков в создании РНК с нуля. И хотя РНК – это намного более простая молекула, чем ДНК, ее создание оказалось невероятной проблемой.

Первые клетки, скорее всего, размножались делением.

Проблема в сахаре

Все дело в сахаре, присутствующем в каждом нуклеотиде, и основе нуклеотида. Их реально создать по отдельности, но связать их воедино не представляется возможным.

К началу 90-х эта проблема уже была очевидной. Многих биологов она убедила в том, что гипотеза «Мира РНК», какой бы привлекательной она ни казалась, все-таки остается лишь гипотезой.

  • Возможно, на ранней Земле изначально существовала другая молекула: проще, чем РНК, и сумевшая собраться из «первичного бульона», а позже начать самовоспроизведение.
  • Возможно, первой была именно эта молекула, а уже после нее появились РНК, ДНК и прочие.

Полиамидная нуклеиновая кислота (ПНК)

В 1991 году Петер Нильсен из Копенгагенского университета в Дании, казалось, нашел подходящего кандидата на роль первичного репликатора.

На самом деле это была значительно усовершенствованная версия ДНК. Нильсен оставил основу неизменной – стандартные A, T, C и G – но вместо молекул сахара использовал молекулы под названием полиамиды.

Получившуюся молекулу он назвал полиамидной нуклеиновой кислотой, или ПНК. Однако, со временем расшифровка аббревиатуры отчего-то превратилась в «пептидная нуклеиновая кислота».

В природе ПНК не встречается. Но ее поведение сильно напоминает поведение ДНК. Цепь ПНК даже может заменить цепь в молекуле ДНК, и основания спарятся как обычно. Более того, ПНК может закручиваться в двойную спираль, как ДНК.

Стэнли Миллер был заинтригован. С глубоким скепсисом относясь к концепции «Мира РНК», он полагал, что ПНК лучше подходит на роль первого генетического материала.

В 2000 году он подкрепил свое мнение доказательствами. К тому моменту ему уже было 70 лет и он пережил несколько инсультов, после которых мог бы оказаться и в доме престарелых, однако сдаваться он не собирался.

Миллер повторил свой классический эксперимент, описанный ранее, в этот раз используя метан, азот, аммиак и воду, и получил в итоге полиамидную основу ПНК.

Из этого следовало, что на ранней Земле вполне могли быть условия для появления ПНК, в отличие от РНК.

Поведение ПНК напоминает ДНК.

Треозо-нуклеиновая кислота (ТНК)

Тем временем другие химики создали собственные нуклеиновые кислоты.

В 2000 году Альберт Эшенмозер создал треозо-нуклеиновую кислоту (ТНК).

По сути это была та же ДНК, но с другим видом сахара в основании. Цепи ТНК могли образовывать двойную спираль, а информация могла передаваться из РНК в ТНК и обратно.

Более того, ТНК могла образовывать и сложные формы, в том числе и форму белка. Это намекало на то, что ТНК могла выполнять роль фермента, как и РНК.

Гликоль-нуклеиновая кислота (ГНК)

В 2005 году Эрик Меггерс создал гликоль-нуклеиновую кислоту, также способную образовывать спираль.

У каждой из этих нуклеиновых кислот находились свои сторонники: обычно сами создатели кислот.

Но в природе от подобных нуклеиновых кислот не осталось ни следа, так что даже если допустить, что их использовала первая жизнь, то на каком-то этапе она должна была отказаться от них в пользу РНК и ДНК.

Звучит правдоподобно, но не подкрепляется доказательствами.

Хороша была концепция, но…

Таким образом, к середине первого десятилетия 21-го века, сторонники концепции «Мира РНК» оказались в затруднительном положении.

С одной стороны, ферменты РНК существовали в природе и включали в себя один из важнейших фрагментов биологических механизмов – рибосому. Это неплохо.

Но, с другой стороны, в природе не было найдено самовоспроизводящейся РНК, и никто так и смог объяснить, как именно сформировалась РНК в «первичном бульоне». Последнее могло объясняться альтернативными нуклеиновыми кислотами, но и их в природе уже (или никогда) не существовало. Это плохо.

Вердикт ко всей концепции «Мира РНК» был очевиден: концепция хороша, но не исчерпывающа.

А тем временем, еще с середины 80-х годов, медленно развивалась другая теория. Ее сторонники уверяли, что жизнь началась не с РНК, ДНК или любой другой генетической субстанции. По их мнению, жизнь зародилась как механизм использования энергии.

Сначала энергия?

Итак, с годами ученые, занимающиеся вопросами происхождения жизни, разделились на 3 лагеря.

Представители первого были убеждены, что жизнь началась с молекулы РНК, но им не удалось выяснить, как молекулам РНК или схожим с РНК удалось спонтанно появиться на ранней Земле и начать самовоспроизведение. Успехи ученых поначалу восхищали, но в итоге исследователи пришли в тупик. Однако, даже когда эти исследования были в самом разгаре, уже нашлись те, кто был уверен, что жизнь зародилась совсем иначе.

Теория «Мира РНК» опирается на простую идею: самая важная функция организма – это способность к продолжению рода. С этим согласны большинство биологов. Все живые существа – от бактерий до синих китов – стремятся оставить потомство.

Тем не менее, многие исследователи данного вопроса не согласны, что репродуктивная функция стоит на первом месте. Они говорят, что до начала размножения организм должен стать самодостаточным. Он должен быть способен поддерживать жизнь в себе. В конце концов, ведь не получится завести детей, если до этого умереть.

Мы поддерживаем жизнь при помощи пищи, в то время как растения поглощают энергию из солнечного света.

Да, парень, с удовольствием уплетающий сочную отбивную, явно не похож на вековой дуб, но ведь по сути они оба поглощают энергию.

Поглощение энергии является основой жизни.

Метаболизм

Говоря об энергии живых существ, мы имеем дело с метаболизмом.

  1. Первый этап – это получение энергии, допустим, из веществ, богатых энергией (например, сахар).
  2. Второй – использование энергии для постройки полезных клеток в организме.

Процесс использования энергии чрезвычайно важен, и многие исследователи уверены, что именно он стал тем, с чего началась жизнь.

Но как могли выглядеть организмы с одной лишь функцией метаболизма?

Первое и самое влиятельное предположение было выдвинуто Гюнтером Вахтершаузером в конце 80-х годов 20-го века. По профессии он был патентным юристом, но имел приличные познания в области химии.

Вахтершаузер предположил, что первые организмы «разительно отличались от всего, что мы знаем». Они не состояли из клеток. У них не было ферментов, ДНК или РНК.

Для наглядности Вахтершаузер описал поток горячей воды, вытекающей из вулкана. Вода была насыщена вулканическими газами типа аммиака и содержала частички минералов из центра вулкана.

В местах, где поток протекал по скалам, начинались химические реакции. Металлы, содержащиеся в воде, способствовали созданию крупных органических соединений из более простых.

Метаболический цикл

Поворотным моментом стало создание первого метаболического цикла.

В ходе этого процесса одно химическое вещество превращается в несколько других, и так далее, пока в итоге все не приходит к воссозданию первого вещества.

Во время процесса вся система, участвующая в метаболизме, накапливает энергию, которую можно использовать для перезапуска цикла или же для запуска какого-то нового процесса.

Все остальное, чем наделены современные организмы (ДНК, клетки, мозг), появилось уже позже, причем на основе этих химических циклов.

Метаболические циклы не очень похожи на жизнь. Поэтому Вахтершаузер называл свои изобретения «прекурсорными организмами» и писал, что их «едва ли можно называть живыми».

Но описанные Вахтершаузером метаболические циклы всегда стоят в центре любого живого организма.

Ваши клетки – это на самом деле микроскопические заводы, беспрестанно расщепляющие одни вещества, превращая их в другие.

Метаболические циклы, несмотря на «механичность», фундаментально важны для жизни.

Две последние декады 20-го века Вахтершаузер посвятил своей теории, прорабатывая ее в деталях. Он описал, какие минералы подошли бы лучше прочих и какие химические циклы могли иметь место. Его рассуждения начали набирать сторонников.

Экспериментальное подтверждение

В 1977 команда Джека Корлисса из Университета штата Орегон совершила погружение в воды восточного Тихого Океана на глубину 2,5 километра (1,5 мили). Ученые изучали Галапагосский горячий источник в месте, где со дна поднимались хребты горных пород. Хребты, как было известно, были изначально вулканически активными.

Корлисс обнаружил, что хребты были практически усеяны горячими источниками. Горячая и насыщенная химическими веществами вода поднималась из-под морского дна и вытекала через отверстия в скалах.

Поразительно, но эти «гидротермальные жерла» были густо населены странными созданиями. Это были огромные моллюски нескольких видов, мидии и кольчатые черви.

Вода также была полна бактерий. Все эти организмы жили за счет энергии из гидротермальных жерл.

Открытие гидротермальных жерл создало Корлиссу отличную репутацию. Оно также заставило его задуматься.

Гидротермальные жерла в океане обеспечивают жизнь организмов сегодня. Возможно, они и стали ее первоисточником?

Гидротермальные жерла

В 1981 году Джек Корлисс предположил, что подобные жерла существовали на Земле 4 миллиарда лет назад и именно вокруг них зародилась жизнь. Всю свою дальшейшую карьеру он посвятил разработке данной идеи.

Корлисс предположил, что гидротермальные жерла могли создавать смесь химических веществ. Каждое жерло, утверждал он, было чем-то вроде распылителя «первичного бульона».

  • Пока горячая вода текла сквозь скалы, тепло и давление заставляло простейшие органические соединения превращаться в более сложные, вроде аминокислот, нуклеотидов и сахара.
  • Ближе к выходу в океан, где вода была уже не такой горячей, они начинали образовывать цепи, формируя углеводы, белки и нуклеотиды вроде ДНК.
  • Затем, уже в самом океане, где вода значительно охлаждалась, эти молекулы собирались в простые клетки.

Теория звучала разумно и привлекла внимание.

Но Стэнли Миллер, чей эксперимент обсуждался ранее, не разделял энтузиазма. В 1988 году он писал, что жерла были чересчур горячими для образования в них жизни.

Теория Корлисса заключалась в том, что экстремальная температура могла запустить формирование веществ вроде аминокислот, но эксперименты Миллера показывали, что она также могла и уничтожить их.

Ключевые соединения типа сахара могли продержаться от силы несколько секунд.

Более того, эти простые молекулы вряд ли сумели бы образовать цепи, поскольку окружающая вода практически моментально разорвала бы их.

Тепло, еще теплее…

В этот момент в дискуссию вступил геолог Майк Расселл . Он полагал, что теория о жерлах идеально вписывается в предположения Вахтершаузера о прекурсорных организмах. Эти мысли привели его к созданию одной из самых популярных теорий о происхождении жизни.

Молодость Расселла прошла за созданием аспирина и изучением ценных минералов. А в ходе возможного извержения вулкана в 60-х он успешно координировал план реагирования, не имея за спиной опыта. Но ему было интересно изучать, как менялась поверхность Земли на протяжении различных эпох. Возможность взглянуть на историю с перспективы геолога и сформировала его теорию о происхождении жизни.

В 80-х он нашел окаменелости, свидетельствующие о том, что в древности существовали гидротермальные жерла, где температура не превышала 150 градусов по Цельсию. Эти умеренные температуры, как он утверждал, могли позволить молекулам продержаться намного дольше, чем считал Миллер.

Более того, в окаменелостях этих менее горячих жерл нашлось нечто любопытное. Минерал под названием пирит, состоящий из железа и серы, в виде трубочек длиной в 1 миллиметр.

В своей лаборатории Расселл обнаружил, что пирит может формировать еще и сферические капли. Он предположил, что первые сложные органические молекулы сформировались именно внутри структур из пирита.

Приблизительно в то же время Вахтершаузер начал публиковать свои теории, базирующиеся на том, что поток воды, богатой на химикаты, вступал во взаимодействие с неким минералом. Он даже предположил, что этим минералом мог быть пирит.

2+2=?

Расселлу оставалось только сложить 2 и 2.

Он допустил, что внутри теплых гидротермальных жерл в глубоком море, где могли образоваться пиритовые структуры, сформировались прекурсорные организмы Вахтершаузера. Если Расселл не заблуждался, то жизнь зародилась на глубине моря, а первым появился метаболизм.

Все это было изложено в статье Расселла, опубликованной в 1993 году, спустя 40 лет после классического эксперимента Миллера.

Резонанс в прессе возник куда меньший, но важность открытия это не умаляет. Расселл объединил две разные идеи (метаболические циклы Вахтершаузера и гидротермальные жерла Корлисса) в одну довольно убедительную концепцию.

Концепция стала еще более впечатляющей, когда Расселл поделился своими идеями, каким образом первые организмы поглощали энергию. Другими словами, он объяснил, как мог работать их метаболизм. Его идея опиралась на работу одного из забытых гениев современной науки.

“Нелепые” эксперименты Митчелла

В 60-х годах биохимик Питер Митчелл по причине болезни был вынужден покинуть Эдинбургский университет.

Он переоборудовал особняк в Корнуолле в личную лабораторию. Будучи отрезанным от научного сообщества, он финансировал свою работу, продавая молоко своих домашних коров. Многие биохимики, в том числе и Лесли Орджел, чьи исследования РНК обсуждались ранее, считали работу Митчелла в крайней степени нелепой.

Почти два десятка лет спустя Митчелл восторжествовал, получив Нобелевскую премию по химии в 1978 году. Знаменитым он так и не стал, однако его идеи прослеживаются в любом учебнике по биологии.

Митчелл посвятил свою жизнь изучению того, на что организмы тратят получаемую из пищи энергию. Другими словами, ему было интересно, как мы остаемся в живых от секунды к секунде.

Британский биохимик Питер Митчелл получил Нобелевскую премию по химии за свою работу по открытию механизма синтеза АТФ.

Как организм хранит энергию

Митчелл знал, что все клетки хранят энергию в конкретной молекуле – аденозинтрифосфат (АТФ). Важно то, что к аденозину прикреплена цепочка из трех фосфатов. На присоединение третьего фосфата уходит много энергии, которая позже заключается в АТФ.

Когда клетке нужна энергия (допустим, при сокращении мышцы), она отсекает третий фосфат от АТФ. Это превращает АТФ в аденозидифосфат (АДФ) и высвобождает накопленную энергию.

Митчелл хотел понять, как клеткам изначально удалось создать АТФ. Как они сконцентрировали достаточно энергии в АДФ для того, чтобы присоединился третий фосфат?

Митчелл знал, что фермент, образующий АТФ, находится на мембране. Он сделал вывод, что клетка закачивает заряженные частицы, называемые протонами, через мембрану, и поэтому по одну сторону можно увидеть множество протонов, в то время как с другой стороны их почти нет.

Затем протоны пытаются вернуться в мембрану, чтобы сохранить баланс с каждой стороны, но попасть они могут только в фермент. Поток снующих протонов и дает ферменту необходимую энергию для создания АТФ.

Митчелл впервые высказал эту идею в 1961 году. Следующие 15 лет он защищал свою теорию от нападок, несмотря на неопровержимые доказательства.

Сегодня известно, что процесс, описанный Митчеллом, свойствен каждому живому существу на планете. Он происходит в ваших клетках прямо сейчас. Как и ДНК, это фундаментальная часть той жизни, что мы знаем.

Для жизни было нужно естественное разделение протонов

Строя свою теорию жизни, Расселл обратил внимание на разделение протонов, показанное Митчеллом: множество протонов на одной стороне мембраны и лишь несколько – на другой.

Всем клеткам нужно такое разделение протонов, чтобы хранить энергию.

Современные клетки создают такое деление, выкачивая протоны из мембраны, но здесь задействована сложная молекулярная механика, которая не могла просто появиться в мгновение ока.

Так что Расселл сделал еще один логический вывод: жизнь сформировалась там, где есть естественное разделение протонов.

Где-то у гидротермальных жерл. Но жерло должно быть конкретного типа.

Ранняя Земля имела кислые моря, а кислая вода просто насыщена протонами. Для разделения протонов вода у гидротермальных жерл должна быть скудна на протоны: иными словами, она должна быть щелочной.

Гидротермальные жерла Корлисса не подходили под это условие. Они не только были слишком горячими, но и чересчур насыщенными кислотами.

Но в 2000 году Дебора Келли из Вашингтонского университета обнаружила первые щелочные гидротермальные жерла.

Доктор Дебора Келли.

Щелочные и прохладные гидротермальные жерла

Келли с большим трудом удалось стать ученой. Ее отец скончался, когда она была в старших классах, и ей приходилось работать после лекций, чтобы оплатить обучение в университете.

Но она преуспела, а позже загорелась идеей изучения подводных вулканов и горячих гидротермальных источников. Страсть к изучению вулканов и подводных горячих жерл привела ее в сердце Атлантического океана. Именно здесь в глубине находился величественный горный хребет, возвышающийся с океанского дна.

На этом хребте Келли обнаружила целую сеть гидротермальных жерл, которые назвала «Затерянным городом». Они не были похожи на те, что нашел Корлисс.

Из них текла вода температурой 40-75 градусов по Цельсию и с небольшим содержанием щелочи. Карбонатные минералы из такой воды образовывали крутые белые столбы, схожие со столбами дыма и возвышающиеся со дна подобно трубам органа. Несмотря на жутковатый и «призрачный» вид, эти столбы на самом деле были домом для колоний микроорганизмов, обитающих в теплой воде.

Эти щелочные жерла прекрасно подходили под теорию Расселла. Он был уверен, что жизнь началась в жерлах, похожих на жерла «Затерянного города».

Но была одна проблема. Будучи геологом, Рассел недостаточно много знал о биологических клетках, чтобы сделать свою теорию максимально убедительной.

Самая исчерпывающая теория возникновения жизни на Земле

Чтобы суметь преодолеть проблемы ограниченности своих знаний, Расселл объединился с американским биологом Уильямом Мартином. Любитель споров Мартин большую часть своей карьеры проработал в Германии.

В 2003 году они представили улучшенную версию ранней концепции Расселла. И, пожалуй, эту теорию о происхождении жизни на Земле можно назвать самой исчерпывающей из всех существующих.

Благодаря Келли они знали, что скалы щелочных жерл были пористыми: они были усеяны небольшими отверстиями, наполненными водой. Ученые предположили, что эти отверстия исполняли роль «клеток». В каждом из них содержались важные вещества, вроде минералов наподобие пирита. Добавьте сюда естественное деление протонов, которое обеспечивали жерла, и получите идеальное место для зарождения метаболизма.

Как только жизнь начала использовать химическую энергию воды из жерл, предположили Расселл и Мартин, она начала создавать молекулы наподобие РНК. В конце концов, она создала собственную мембрану, став настоящей клеткой, и покинула пористую скалу, направившись в открытые воды.

На сегодняшний день это одна из ведущих гипотез касательно происхождения жизни.

Последние открытия

Серьезную поддержку эта теория получила в июле 2016 года, когда Мартин опубликовал исследования, в ходе которых производилась реконструкция некоторых особенностей «последнего универсального общего предка» (ПУОП). Это условное название организма, существовавшего миллиарды лет назад, который и дал начало всему разнообразию современной жизни.

Нам, возможно, уже не удастся найти окаменелости этого организма, но на основе всех имеющихся данных мы можем предположить, как он выглядел и какие характеристики имел, изучив современные микроорганизмы.

Именно это и сделал Мартин. Он изучил ДНК 1930 современных микроорганизмов и выделил 355 генов, которые присутствовали почти в каждом из них.

Можно допустить, что именно эти 355 генов передавались из поколения в поколение, поскольку все эти 1930 микробов имели общего предка – предположительно с тех времен, когда еще существовал ПУОП.

Среди этих генов были те, что отвечали за использование разделения протонов, но не было отвечающих за создание этого деления – точно как в теории Расселла и Мартина.

Более того, ПУОП, похоже, сумел адаптироваться к веществам вроде метана, что подразумевало наличие вулканически активной окружающей среды вокруг. То есть, гидротермального жерла.

Не все так просто

Однако сторонники идеи «Мира РНК» нашли две проблемы в концепции Расселла-Мартина. Одну еще можно потенциально исправить, но другая могла означать крах всей теории.

Первая проблема заключается в отсутствии экспериментальных доказательств того, что описанные Расселлом и Мартином процессы реально имели место.

Да, ученые шаг за шагом выстроили теорию, но ни один из шагов не был пока воспроизведен в лабораторных условиях.

«Сторонники идеи о первичном появлении репликации регулярно предоставляют результаты опытов», говорит Армен Мулкиджанян, эксперт по вопросам происхождения жизни. «Сторонники же идеи о первичном появлении метаболизма этого не делают».

Но это может скоро измениться благодаря коллеге Мартина, Нику Лейну из Университетского колледжа Лондона. Лейн сконструировал «реактор происхождения жизни», который будет симулировать условия внутри щелочного жерла. Он надеется воссоздать метаболические циклы и, возможно, даже РНК. Но пока об этом рано говорить.

Вторая проблема заключается в том, что жерла расположены глубоко под водой. Как указал Миллер в 1988 году, молекулы с длинными цепями, вроде РНК и белков, не смогут сформироваться в воде при отсутствии ферментов, которые не позволят им распасться.

Для многих исследователей этот аргумент стал решающим.

«Имея образование в области химии, поверить в теорию с глубоководными жерлами не получится, поскольку вы знаете химию и понимаете, что все эти молекулы несовместимы с водой», говорит Мулкиджанян.

Тем не менее, Расселл и его сторонники не спешат отрекаться от своих идей.

Но в последнее десятилетие на передний план вышел третий подход, который сопровождался серией крайне любопытных экспериментов.

В отличие от теорий о «Мире РНК» и гидротермальных жерл, этот подход в случае успеха обещал немыслимое – создание живой клетки с нуля.

Как создать клетку?

К началу 21-го века существовало две ведущие концепции происхождения жизни.

  1. Сторонники «Мира РНК» утверждали, что жизнь началась с самовоспроизводящейся молекулы.
  2. Сторонники же теории о «первичном метаболизме» создали детальное представление о том, как могла зародиться жизнь в глубоководных гидротермальных источниках.

Тем не менее, на передний план вышла третья теория.

Каждое живое существо на Земле состоит из клеток. Каждая клетка – это по сути мягкий шарик с жесткой стенкой, или «мембраной».

Задача клетки – содержать все жизненно важные элементы внутри. Если порвется внешняя стенка, то выльются внутренности, а клетка фактически погибнет – как выпотрошенный человек.

Внешняя стенка клетки настолько важна, что некоторые ученые полагают, что именно она должна была появиться первой. Они уверены, что теория о «первичной генетике» и теория о «первичном метаболизме» в корне неверны.

Их альтернатива, «первичная компартментализация», опирается в первую очередь на труды Пьера Луиджи Луизи из Университета Рома Тре в Риме.

Теория протоклетки

Доводы Луизи просты и убедительны. Как можно представить себе процесс метаболизма или самовоспроизводящуюся РНК, где нужна уйма веществ в одном месте, если еще не существует контейнера, где молекулы находятся в безопасности?

Вывод из этого следующий: есть только один вариант происхождения жизни.

Каким-то образом посреди жары и бурь ранней Земли некие исходные материалы сформировали примитивные клетки, или «протоклетки».

Чтобы доказать эту теорию, необходимо провести опыты в лаборатории – попытаться создать простую живую клетку.

Корнями идеи Луизи уходили в труды советского ученого Александра Опарина, о котором шла речь ранее. Опарин подчеркнул, что некоторые вещества формируют пузыри, называемые коацерватами , которые могут удерживать другие вещества в своем центре.

Луизи предположил, что эти коацерваты и были первыми протоклетками.

Коацерваты могли быть первыми протоклетками.

Мир липидов

Любое жирное или масляное вещество образует пузыри или пленку на воде. Эта группа веществ называется липидами, а теория о том, что именно они дали начало жизни, зовется «Миром липидов».

Но одного формирования пузырей недостаточно. Они должны быть стабильными, иметь возможность деления, чтобы создавать «дочерние» пузыри, и хотя бы немного контролировать поток входящих и выходящих из них веществ – все это без белков, которые отвечают за данные функции в современных клетках.

Значит, необходимо было создать протоклетки из нужных материалов. Именно этим и занимался Луизи несколько десятилетий, но ничего убедительного так и не представил.

Протоклетка с РНК

Затем в 1994 году Луизи высказал смелое предположение. По его мнению, первые протоклетки должны были содержать РНК. Более того, эта РНК должна была уметь самовоспроизводиться внутри протоклетки.

Данное предположение означало отказ от чистой «первичной компартментализации», но у Луизи были на то веские причины.

Клетка с внешней стенкой, но без генов внутри, была лишена многих функций. Она должна была быть способной делиться на дочерние клетки, но не могла передавать информацию о себе своему потомству. Начать развиваться и становиться сложнее клетка могла лишь при условии наличия хотя бы нескольких генов.

Вскоре теория обрела солидного сторонника в лице Джека Шостака, чья работа по гипотезе «Мира РНК» обсуждалась ранее. Долгие годы эти ученые были по разные стороны научного сообщества – Луизи поддерживал идею «первичной компартментализации», а Шостак – «первичной генетики».

«На конференциях по вопросам происхождения жизни мы всегда вступали в долгие дебаты касательно того, что было важнее и что появилось раньше», вспоминает Шостак. «В конце концов, мы поняли, что клеткам необходимо и то, и другое. Мы пришли к выводу, что без компартментализации и генетической системы не смогла бы образоваться первая жизнь».

В 2001 году Шостак и Луизи объединили усилия и продолжили исследования. В статье в журнале «Nature» они утверждали, что для создания живой клетки с нуля необходимо поместить самовоспроизводящуюся РНК в простую каплю жира.

Идея была смелой, и вскоре Шостак полностью посвятил себя ее реализации. Справедливо рассудив, что «нельзя расписывать теорию без практических доказательств», он решил начать эксперименты с протоклетками.

Везикулы

Спустя два года Шостак с двумя коллегами объявили о большом научном прорыве.

Опыты проводились на везикулах: сферических каплях с двумя слоями жирных кислот снаружи и жидким ядром внутри.

В попытке ускорить создание везикул, ученые добавили частицы глинистого минерала под названием монтмориллонит. Это ускорило формирование везикул в 100 раз. Поверхность глины служила катализатором, по сути выполняя задачу фермента.

Более того, везикулы могли поглощать как частицы монтмориллонита, так и цепи РНК с поверхности глины.

Благодаря простой добавке глины, в итоге протоклетки содержали и гены и катализатор.

Решение добавить монтмориллонит возникло неспроста. Десятилетия исследований показывали, что монтмориллонит и другие глинистые минералы были очень важны при зарождении жизни.

Монтмориллонит – это обычная глина. Ныне он широко используется в быту, к примеру, в качестве наполнителя для кошачьих туалетов. Формируется он при расщеплении вулканического пепла под воздействием погодных условий. Поскольку на ранней Земле существовало немало вулканов, логично предположить, что монтмориллонита было в избытке.

Еще в 1986 году химик Джеймс Феррис доказал, что монтмориллонит – это катализатор, способствующий формированию органических молекул. Позднее он также обнаружил, что этот минерал ускоряет формирование малых РНК.

Это навело Ферриса на мысль, что невзрачная глина была в свое время местом появления жизни. Шостак подхватил эту идею и использовал монтмориллонит при создании протоклеток.

Формирование везикул при участии глины происходило в сотни раз быстрее.

Развитие и деление протоклеток

Спустя год команда Шостака обнаружила, что их протоклетки растут сами по себе.

По мере добавления новых молекул РНК в протоклетку, внешняя стенка прогибалась под нарастающим давлением. Выглядело это так, словно протоклетка набила себе живот и вот-вот лопнет.

Чтобы компенсировать давление, протоклетки выбирали наиболее жирные кислоты и встраивали их в стенку, чтобы продолжить безопасно раздуваться до больших размеров.

Но важно то, что жирные кислоты брались из других протоклеток с меньшим содержанием РНК, из-за чего те начали сжиматься. Это означало, что протоклетки соревновались, а выигрывали те, что содержали больше РНК.

Это вело к впечатляющим выводам. Если протоклетки могли расти, то могли ли они делиться? Сможет ли Шостак заставить протоклетки самостоятельно воспроизводиться?

Первые опыты Шостака показали один из способов деления протоклеток. При проталкивании протоклеток сквозь маленькие отверстия они сжимались в форму трубочек, которые после делились на «дочерние» протоклетки.

Эта было круто, ведь в процессе не было задействовано никаких клеточных механизмов, только обычное механическое давление.

Но были и минусы, поскольку в процессе опыта протоклетки теряли часть своего содержимого. Также получалось, что первые клетки могли делиться лишь под давлением внешних сил, которые проталкивали бы их сквозь узкие отверстия.

Существует много способов заставить везикулы делиться: например, добавить мощный поток воды. Но нужно было найти способ, при которым протоклетки делились бы, не теряя своего содержимого.

Принцип луковицы

В 2009 году Шостак и его студент Тинь Чжу нашли решение. Они создали чуть более сложные протоклетки с несколькими стенками, немного напоминавшими слои луковицы. Несмотря на кажущуюся сложность, создать такие протоклетки было довольно просто.

Пока Чжу подпитывал их жирными кислотами, протоклетки росли и меняли форму, удлиняясь и приобретая нитевидную форму. Когда протоклетка становилась достаточно крупной, хватало лишь небольшого приложения силы, чтобы она распалась на маленькие дочерние протоклетки.

Каждая дочерняя протоклетка содержала РНК из материнской протоклетки, и практически ни один элемент РНК не терялся. Более того, протоклетки могли и дальше продолжать этот цикл – дочерние протоклетки росли и делились уже самостоятельно.

В ходе дальнейших опытов Чжу и Шостак нашли способ заставить протоклетки делиться. Похоже, одна часть проблемы была решена.

Необходимость самокопирующейся РНК

Однако, протоклетки все еще не функционировали должным образом. Луизи видел протоклетки в роли носителей самовоспроизводящихся РНК, но пока что РНК просто находились внутри и ни на что не влияли.

Чтобы продемонстрировать, что протоклетки и правда были первой жизнью на Земле, Шостаку необходимо было заставить РНК создавать свои копии.

Задача была не из легких, поскольку десятилетия опытов ученых, о которых мы писали ранее, так и не привели к созданию самовоспроизводящихся РНК.

С этой же проблемой столкнулся сам Шостак в ходе своих ранних работ над теорией «Мира РНК». С тех пор ее, похоже, никто так и не решил.

Орджел провел 70-е и 80-е годы за изучением принципа копирования цепей РНК.

Суть его проста. Нужно взять одну цепь РНК и поместить ее в емкость с нуклеотидами. Затем использовать эти нуклеотиды для создания второй цепи РНК, которая дополнит первую.

К примеру, цепь РНК образца «CGC» сформирует дополнительную цепь образца «GCG». Следующая же копия воссоздаст оригинальную цепь «CGC».

Орджел заметил, что в определенных условиях цепи РНК копируются таким способом без помощи ферментов. Вполне возможно, что первая жизнь копировала свои гены именно этим образом.

К 1987 году Орджел уже мог создавать дополнительные цепи длиной в 14 нуклеотидов в цепочках РНК, чья длина была также равна 14 нуклеотидам.

Недостающий элемент

Адамала и Шостак обнаружили, что для реакции необходим магний. Это было проблематично, поскольку магний уничтожал протоклетки. Но был и выход: использовать цитрат, который практически идентичен лимонной кислоте, содержащейся в лимонах и апельсинах, и который присутствует в любой живой клетке.

В докладе, опубликованном в 2013 году, Адамала и Шостак рассказали об исследовании, в ходе которого в протоклетки был добавлен цитрат, накладывающийся на магний и защищающий протоклетки, не мешая при этом копированию цепочек.

Иными словами, они достигли того, о чем говорил Луизи в 1994 году. «Мы запустили самовоспроизведение РНК внутри жирно-кислотных везикул», говорит Шостак.

Всего за десять лет исследований команда Шостака достигла невероятных результатов.

  • Ученые создали протоклетки, которые сохраняют свои гены, в то же время поглощая полезные молекулы из окружающей среды.
  • Протоклетки могут расти и делиться и даже соревноваться друг с другом.
  • В них существуют РНК, которые самовоспроизводятся.
  • По всем параметрам, созданные в лаборатории протоклетки удивительно напоминают жизнь.

Они также были устойчивыми. В 2008 году команда Шостака обнаружила, что протоклетки могут пережить температуру до 100 градусов по Цельсию – температуру, при которой гибнет большинство современных клеток. Это лишь усилило уверенность в том, что протоклетки схожи с первой жизнью, которой необходимо было как-то выживать в условиях постоянных метеоритных дождей.

«Успехи Шостака впечатляют», – говорит Армен Мулкиджанян.

Однако, на первый взгляд, подход Шостака сильно отличается от прочих исследований происхождения жизни, продолжавшихся последние 40 лет. Вместо того, чтобы фокусироваться на «первичном самовоспроизведении» или «первичной компартментализации», он нашел способ совместить эти теории.

Это стало поводом для создания нового объединенного подхода к изучению вопроса происхождения жизни на Земле.

Данный подход подразумевает, что у первой жизни не было характеристики, появившейся раньше прочих. Идея о «первичном наборе характеристик» уже имеет немало практических доказательств и гипотетически может решить все проблемы существующих теорий.

Великое объединение

В поисках ответа на вопрос о зарождении жизни, ученые 20 века разделились на 3 лагеря. Каждый придерживался только своих гипотез и свысока отзывался о работах двух других. Такой подход определенно был результативным, но каждый из лагерей в итоге столкнулся с неразрешимыми проблемами. Поэтому в наши дни несколько ученых решились опробовать объединенный подход к данной проблеме.

Идея объединения берет свои корни в недавнем открытии, которое доказывает традиционную теорию о «первичном самовоспроизведении» «Мира РНК», но лишь на первый взгляд.

В 2009 году сторонники теории «Мира РНК» столкнулись с крупной проблемой. Они не могли создать нуклеотиды, строительные блоки РНК, таким образом, каким они могли бы самосоздаться в условиях ранней Земли.

Как мы видели ранее, это привело многих исследователей к мысли, что первая жизнь основывалась вовсе не на РНК.

Джон Сазерленд размышлял над этим еще с 80-х годов прошлого века. «Было бы здорово, если бы кто-нибудь сумел продемонстрировать, как самостоятельно собирается РНК», – говорит он.

К счастью Сазерленда, он работал в Кембриджской лаборатории молекулярной биологии (ЛМБ). Большинство исследовательских институтов постоянно тормошат своих работников в ожидании новых открытий, но ЛМБ позволяла сотрудникам серьезно поработать над проблемой. Поэтому Сазерленд мог спокойно размышлять о том, почему так сложно создать нуклеотиды РНК, и в течение нескольких лет разрабатывал альтернативный подход.

В итоге Сазерленд пришел к совершенно новым взглядам на происхождение жизни, заключавшимся в том, что все ключевые компоненты жизни могли сформироваться одновременно.

Скромное здание Кембриджской лаборатории молекулярной биологии.

Счастливое стечение молекул и обстоятельств

«В химии РНК не работали сразу несколько ключевых аспектов», – объясняет Сазерленд. Каждый нуклеотид РНК состоит из сахара, основания и фосфата. Но на практике заставить сахар и основание взаимодействовать оказалось невозможно. Молекулы были попросту не той формы.

Поэтому Сазерленд начал эксперименты с другими веществами. В итоге его команда создала 5 простых молекул, состоящих из другого вида сахара и цианамида, который, как видно по названию, родственен цианиду. Данные вещества пропустили через ряд химических реакций, что в итоге привело к созданию двух из четырех нуклеотидов.

Бесспорно, это был успех, мгновенно поднявший репутацию Сазерленда.

Многим наблюдателям показалось, что это очередное доказательство в пользу теории о «Мире РНК». Но сам Сазерленд смотрел на это иначе.

«Классическая» гипотеза «Мира РНК» концентрировалась на том, что в первых организмах РНК отвечала за все жизненные функции. Но Сазерленд называет это утверждение «безнадежно оптимистичным». Он считает, что РНК принимала в них участие, но не была единственно важным для жизнеспособности компонентом.

Сазерленд вдохновился последней работой Джека Шостака, который объединил концепцию «первичного самовоспроизведения» «Мира РНК» с идеями Пьера Луиджи Луизи о «первичной компартментализации».

Как создать живую клетку с нуля

Внимание Сазерленда привлекла любопытная деталь в синтезе нуклеотидов, поначалу казавшаяся случайной.

Последним шагом в опытах Сазерленда всегда было добавление фосфатов в нуклеотид. Но позже он понял, что добавлять его следует с самого начала , поскольку фосфат ускоряет реакции на ранних этапах.

Изначальное добавление фосфата, казалось, только увеличивает хаотичность реакции, но Сазерленд сумел понять, что эта хаотичность идет на пользу.

Это навело его мысли о том, что смеси должны быть хаотичными . На ранней Земле, скорее всего, в одной луже плавала уйма химических веществ. Разумеется, смеси не должны напоминать болотные воды, ведь нужно найти оптимальный уровень хаотичности.

Созданные в 1950 году смеси Стэнли Миллера, о которых говорилось ранее, были куда хаотичней смеси Сазерленда. Они содержали биологические молекулы, но, как говорит Сазерленд, их «было немного, и сопровождались они куда большим количеством не биологических соединений».

Сазерленд посчитал, что условия опыта Миллера были недостаточно чистыми. Смесь была чересчур хаотичной, из-за чего нужные вещества просто терялись в ней.

Поэтому Сазерленд решил подобрать «химию Златовласки»: не настолько перегруженную различными веществами, чтобы стать бесполезной, но и не настолько простую, чтобы она была ограничена в возможностях.

Требовалось создать усложненную смесь, в которой одновременно могли образоваться, а затем и объединиться все компоненты жизни.

Первобытный пруд и формирование жизни за несколько минут

Проще говоря, представьте себе, что 4 миллиарда лет назад на Земле существовал небольшой пруд. В течение многих лет в нем образовывались необходимые вещества, до тех пор, пока смесь не приобрела химический состав, который и нужен, чтобы запустить процесс. А затем сформировалась первая клетка, возможно, всего за несколько минут.

Это может звучать фантастично, словно утверждения средневековых алхимиков. Но у Сазерленда начали появляться доказательства.

С 2009 года он демонстрировал, что с помощью тех же веществ, на основе которых сформировались его первые два нуклеотида РНК, можно создать и другие молекулы, важные для любого живого организма.

Очевидным следующим шагом должно было стать создание других нуклеотидов РНК. С этим Сазерленд пока не справился, но в 2010 году продемонстрировал близкие к этому молекулы, которые потенциально могли превратиться в нуклеотиды.

А в 2013 году он собрал прекурсоры аминокислот. В этот раз для создания необходимой реакции он добавил цианид меди.

Вещества, основанные на цианиде, присутствовали во многих опытах, и в 2015 году Сазерленд вновь использовал их. Он показал, что с тем же набором веществ можно создать прекурсоры липидов – молекул, из которых состоят стенки клеток. Реакция проходила под воздействием ультрафиолета, и в ней участвовали сера и медь, помогавшие ускорить процесс.

«Все строительные блоки [сформировались] из общего ядра химических реакций», объясняет Шостак.

Если Сазерленд прав, то наша точка зрения на вопрос происхождения жизни была в корне неверной последние 40 лет.

С момента, когда ученые увидели, насколько сложной была конструкция клетки, все были сконцентрированы на мысли о том, что первые клетки собирались воедино постепенно, элемент за элементом .

С тех пор, как Лесли Орджел озвучил мысль о том, что первой появилась РНК, исследователи «пытались брать за основу один элемент, а затем заставлять его создавать остальные», говорит Сазерленд. Сам он считает, что создавать нужно все сразу .

Хаос – необходимое условие жизни

«Мы поставили под вопрос идею о том, что клетка слишком сложная, чтобы возникнуть сразу», – говорит Сазерленд. – «Как видите, можно одновременно создать строительные блоки для всех систем».

Шостак даже подозревает, что большинство попыток создать молекулы жизни и собрать их в живые клетки терпели неудачу по той же причине: слишком стерильные условия опытов.

Ученые брали необходимые вещества и совершенно забывали о тех, которые, возможно, также существовали на ранней Земле. Но работа Сазерленда показывает, что при добавлении новых веществ в смесь возникают более сложные соединения.

Шостак и сам столкнулся с этим в 2005 году, когда пытался внедрить фермент РНК в свои протоклетки. Ферменту нужен был магний, который уничтожал мембрану протоклеток.

Решение было элегантным. Вместо того, чтобы создавать везикулы из одной лишь жирной кислоты, создавать их из смеси из двух кислот. Получившиеся везикулы могли справляться с магнием, а значит, могли выполнять роль «носителей» ферментов РНК.

Более того, Шостак говорит, что первым генам, вероятно, была присуща хаотичность.

Современные организмы используют чистую ДНК для передачи генов, но, скорее всего, в самом начале чистой ДНК попросту не существовало. На ее месте могла быть смесь из нуклеотидов РНК и нуклеотидов ДНК.

В 2012 году Шостак показал, что подобная смесь может собираться в «мозаичные» молекулы, которые выглядят и ведут себя, как чистая РНК. И это доказывает, что теория о перемешанных молекулах РНК и ДНК имеет право на существование.

Эти опыты говорили о следующем – неважно, могли ли первые организмы иметь чистую РНК или чистую ДНК.

«На самом деле я вернулся к идее о том, что первый полимер был схож с РНК, но выглядел немного хаотичней», – говорит Шостак.

Альтернативы РНК

Вполне возможно, что альтернатив РНК теперь могло стать больше, вдобавок к уже существующим ТНК и ПНК, о которых рассказывалось ранее. Мы не знаем, существовали ли они на ранней Земле, но даже если и существовали, то первые организмы вполне могли использовать их вместе с РНК.

Это был уже не «Мир РНК», а «Мир чего-только-нет».

Из всего этого можно извлечь следующий урок – самосоздание первой живой клетки вовсе не было таким уж сложным делом, как нам раньше казалось. Да, клетки – это комплексные механизмы. Но, как выяснилось, они будут работать, пусть и не идеально, даже если их «слепить как попало» из подручных материалов.

Появившись, такие грубые в плане строения клетки, казалось бы, имели немного шансов выжить на ранней Земле. С другой стороны, у них не было конкуренции, им не угрожали никакие хищники, так что во многих смыслах жизнь на первозданной Земле была проще, чем сейчас.

Но есть одно “Но”

Но существует одна проблема, которую не смогли решить ни Сазерленд, ни Шостак, и она довольно серьезна.

У первого организма должна была быть некая форма метаболизма. С самого начала у жизни должна была иметься способность получить энергию, а иначе эта жизнь погибла бы.

В этот момент Сазерленд согласился с идеями Майка Расселла, Билла Мартина и других сторонников «первичного метаболизма».

«Сторонники теорий о «мире РНК» и «первичного метаболизма» зря спорили друг с другом. У обоих сторон хватало веских аргументов», – поясняет Сазерленд.

«Метаболизм так или иначе с чего-то начался», – пишет Шостак. – «Но вот что стало источником химической энергии – это большой вопрос».

Даже если Мартин и Расселл заблуждаются в том, что жизнь началась в глубоководных жерлах, многие части их теории близки к истине. Первая – это важная роль металлов при зарождении жизни.

Многие ферменты в природе имеют в своем ядре атом металла. Обычно это «активная» часть фермента, в то время как остальная часть молекулы – это поддерживающая структура.

В первой жизни не могли присутствовать сложные ферменты, поэтому скорее всего она использовала «голые» металлы в качестве катализаторов.

Катализаторы и ферменты

О том же говорил и Гюнтер Вахтеншаузер, когда предположил, что жизнь сформировалась на железном пирите. Расселл также подчеркивает, что вода в гидротермальных жерлах насыщенна металлами, которые могут быть катализаторами, а исследования Мартина на тему последнего универсального общего предка у современных бактерий свидетельствуют о наличии в нем многих ферментов на основе железа.

Все это говорит о том, что многие химические реакции Сазерленда протекали успешно лишь за счет меди (и серы, как подчеркнул Вахтершаузер), и что РНК в протоклетках Шостака нуждается в магнии.

Вполне может оказаться, что гидротермальные жерла также важны для создания жизни.

«Если взглянуть на современный метаболизм, то можно увидеть элементы, которые говорят сами за себя, вроде кластеров из железа и серы», – поясняет Шостак. – «Это вписывается в идею о том, что жизнь зародилась внутри или около жерла, где вода насыщена железом и серой».

С учетом сказанного можно добавить лишь одно. Если Сазерленд и Шостак на верном пути, то один аспект теории о жерлах определенно является заблуждением: жизнь не могла начаться в глубине моря.

«Открытые нами химические процессы сильно зависят от ультрафиолетового излучения», – считает Сазерленд.

Единственный источник такого излучения – это Солнце, так что реакции должны происходить непосредственно под его лучами. Это вычеркивает версию с глубоководными жерлами.

Шостак согласен, что глубины моря нельзя считать колыбелью жизни. «Хуже всего то, что они изолированы от взаимодействия с атмосферой, которая является источником исходных материалов, богатых энергией, вроде цианида».

Но все эти проблемы не делают теорию о гидротермальных жерлах бесполезной. Возможно, эти жерла располагались на мелководье, где имели доступ к солнечному свету и цианиду.

Жизнь зародилась не в океане, а на суше

Армен Мулкиджанян предложил альтернативу. Что, если жизнь зародилась в воде, но не в океане, а на суше? А именно – в вулканическом пруду.

Мулкиджанян обратил внимание на химический состав клеток: в частности, какие вещества они принимают, а какие отторгают. Выяснилось, что клетки любого организма содержат много фосфата, калия и других металлов, за исключением натрия.

Современные клетки сохраняют баланс металлов, выкачивая их из окружающей среды, но у первых клеток такой возможности не было – механизм выкачивания еще не был развит. Поэтому Мулкиджанян предположил, что первые клетки появились там, где имелся примерный набор веществ, из которых состоят нынешние клетки.

Это сразу вычеркивает океан из списка потенциальной колыбели жизни. В живых клетках намного больше калия и фосфата и намного меньше натрия, чем содержится в океане.

Под эту теорию больше подходят геотермальные источники вблизи вулканов. В этих прудах содержится та же смесь металлов, что и в клетках.

Шостак идею горячо поддерживает. «Мне кажется, идеально подходящим под все условия местом было бы мелкое озеро или пруд в геотермально активной области», – подтверждает он. «Нужны гидротермальные жерла, но не глубоководные, а скорее похожие на те, что есть в вулканически активных областях вроде Йеллоустона».

В таком месте могли бы протекать химические реакции Сазерленда. В источниках есть необходимый набор веществ, уровень воды колеблется, так что некоторые участки временами пересыхают, и нет недостатка солнечных ультрафиолетовых лучей.

Более того, Шостак говорит, что подобные пруды отлично подходят для его протоклеток.

«Протоклетки в основном сохраняют низкую температуру, что хорошо влияет на копирование РНК и другие виды простого метаболизма», – утверждает Шостак. – «Но время от времени они ненадолго нагреваются, что способствует разделению цепей РНК и подготавливает их к дальнейшему самовоспроизведению». Делиться протоклеткам также могут помочь потоки холодной или горячей воды.

Геотермальные источники у вулканов вполне могли стать местом зарождения жизни.

Жизни могли помочь метеориты

На основе всех существующих аргументов Сазерленд предлагает и третий вариант – место падения метеорита.

Земля регулярно подвергалась метеоритным дождям в первые 500 миллионов лет существования – они падают и по сей день, но значительно реже. Приличных размеров место падения метеорита могло создать те же условия, что и пруды, о которых говорил Мулкиджанян.

Во-первых, метеориты по большей части состоят из металла. А места их падения зачастую богаты металлами типа железа и серы. И, что самое главное, в местах падения метеорита продавливается земная кора, что ведет к геотермальной активности и появлению горячей воды.

Сазерленд описывает небольшие реки и ручейки, струящиеся по склонам новообразованных кратеров, которые вытягивают вещества, основанные на цианиде, из камней – и все это происходит под воздействием ультрафиолетовых лучей. Каждый ручеек несет в себе немного отличную от прочих смесь веществ, так что в итоге происходят различные реакции и производится целый ряд органических веществ.

В конце концов ручейки объединяются в вулканический пруд на дне кратера. Возможно, именно в таком пруду в свое время собрались все нужные вещества, из которых сформировались первые протоклетки.

«Это весьма специфический ход событий», – соглашается Сазерленд. Но он склоняется к нему на основании найденных химических реакций: «Это единственный ход событий, где могли бы протекать все реакции, показанные в моих опытах».

Шостак же еще не до конца уверен в этом, но он согласен, что идеи Сазерленда заслуживают пристального внимания: «Мне кажется, что эти события могли происходить на месте падения метеорита. Но мне также нравится идея с вулканическими системами. В пользу обоих версий есть крепкие аргументы».

Когда мы получим ответ на вопрос: как зародилась жизнь?

Дебаты, похоже, прекратятся еще не скоро, и к общему мнению ученые придут не сразу. Решение будет принято на основе опытов с химическими реакциями и протоклетками. Если выяснится, что в одном из вариантов не хватает ключевого вещества, или используется вещество, разрушающее протоклетки, то его признают неверным.

Это означает, что впервые в истории мы стоим на пороге наиболее полного объяснения того, как зародилась жизнь.

«Задачи уже не кажутся невыполнимыми», – оптимистично заявляет Сазерленд.

Пока что подход с условным названием «все и сразу» от Шостака и Сазерленда – это лишь грубые наброски. Но каждый из аргументов данного подхода был доказан десятилетиями экспериментов.

Эта концепция опирается на все подходы, существовавшие ранее. Она комбинирует в себе все удачные наработки, в то же время решая отдельные проблемы каждого подхода.

Например, не опровергает теорию Расселла о гидротермальных жерлах, а использует ее самые удачные элементы.

Что случилось 4 миллиарда лет назад

Мы не знаем наверняка, что происходило 4 миллиарда лет назад.

«Даже если создать реактор, откуда выскочит кишечная палочка… нельзя сказать, что это воспроизведение той самой первой жизни», – считает Мартин.

Лучшее, что мы можем сделать – это представить ход событий, подкрепив свое видение доказательствами: опытами в области химии, всеми знаниями о ранней Земле и всем тем, что говорит биология о ранних формах жизни.

В итоге, после столетий напряженных усилий, мы увидим, как начнет вырисовываться история реального хода событий.

Это значит, что мы приближаемся к величайшему разделению в истории человечества: разделению на тех, кто узнает историю зарождения жизни, и тех, кто не дожил до этого момента, а потому уже никогда не сможет ее узнать.

Все те, кто не дожил до публикации «Происхождения видов» Дарвина в 1859 году, умерли, не имея ни малейшего представления о происхождении человека, поскольку они ничего не знали об эволюции. Но сегодня каждый, за исключением ряда изолированных общин, может узнать правду о нашем родстве с другими представителями животного мира.

Точно так же все, кто родился после выхода Юрия Гагарина на орбиту Земли, стали членами общества, которое способно путешествовать к другим мирам. И пусть за пределами планеты побывал далеко не каждый ее житель, но космические путешествия уже стали современной реальностью.

Новая реальность

Эти факты незаметно меняют наше мироощущение. Они делают нас мудрее. Эволюция учит нас ценить любое живое существо, поскольку всех нас можно считать родственниками, пусть и далекими. Космические путешествия учат нас смотреть на свою родную планету со стороны, чтобы понять, насколько она уникальна и хрупка.

Некоторые из живущих сейчас людей вскоре станут первыми в истории из тех, кто способны рассказать о своем происхождении. Они будут знать о своем едином предке и о том, где он обитал.

Это знание изменит нас. С чисто научной точки зрения оно даст нам представление о шансах зарождения жизни во Вселенной и о том, где ее можно искать. Оно также раскроет перед нами сущность жизни.

Но нам остается только догадываться, какая мудрость предстанет перед нами в момент, когда секрет происхождения жизни будет раскрыт. С каждым месяцем и годом мы ближе к разгадке великой тайны зарождения жизни на нашей планете. Новые открытия совершаются прямо сейчас, когда вы читаете эти строки.

Прочтите также:

Share this article

Вопрос о том, когда на Земле появилась жизнь, всегда волновал не только ученых, но и всех людей. Ответы на него

практически всех религий. Хотя точного научного ответа на него до сих пор нет, некоторые факты позволяют высказать более или менее обоснованные гипотезы. В Гренландии исследователями был найден образец горной породы

с крошечным вкраплением углерода. Возраст образца более 3,8 млрд лет. Источником углерода, скорее всего, было какое-то органическое вещество – за такое время оно полностью утратило свою структуру. Ученые полагают, что этот комочек углерода может быть самым древним следом жизни на Земле.

Как выглядела первобытная Земля?

Перенесемся на 4 млрд лет назад. Атмосфера не содержит свободного кислорода, он находится только в составе окислов. Почти никаких звуков, кроме свиста ветра, шипения извергающейся с лавой воды и ударов метеоритов о поверхность Земли. Ни растений, ни животных, ни бактерий. Может быть, так выглядела Земля, когда на ней появилась жизнь? Хотя эта проблема издавна волнует многих исследователей, их мнения на этот счет сильно различаются. Об условиях на Земле того времени могли бы свидетельствовать горные породы, но они давно разрушились в результате геологических процессов и перемещений земной коры.

В этой статье мы кратко расскажем о нескольких гипотезах возникновения жизни, отражающих современные научные представления. Как считает известный специалист в области проблемы возникновения жизни Стэнли Миллер, о возникновении жизни и начале ее эволюции можно говорить с того момента, как органические молекулы самоорганизовывались в структуры, которые смогли воспроизводить самих себя. Но это порождает другие вопросы: как возникли эти молекулы; почему они могли самовоспроизводиться и собираться в те структуры, которые дали начало живым организмам; какие нужны для этого условия?

Согласно одной из гипотез жизнь началась в кусочке льда. Хотя многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима. При низкой температуре все химические соединения более стабильны и поэтому могут накапливаться в больших количествах, чем при высокой температуре. Занесенные из космоса осколки метеоритов, выбросы из гидротермальных источников и химические реакции, происходящие при электрических разрядах в атмосфере, были источниками аммиака и таких органических соединений, как формальдегид и цианид. Попадая в воду Мирового океана, они замерзали вместе с ней. В ледяной толще молекулы органических веществ тесно сближались и вступали во взаимодействия, которые приводили к образованию глицина и других аминокислот. Океан был покрыт льдом, который защищал вновь образовавшиеся соединения от разрушения под действием ультрафиолетового излучения. Этот ледяной мир мог растаять, например, при падении на планету огромного метеорита (рис. 1).

Чарлз Дарвин и его современники полагали, что жизнь могла возникнуть в водоеме. Этой точки зрения многие ученые придерживаются и в настоящее время. В замкнутом и сравнительно небольшом водоеме органические вещества, приносимые впадающими в него водами, могли накапливаться в необходимых количествах. Затем эти соединения еще больше концентрировались на внутренних поверхностях слоистых минералов, которые могли быть катализаторами реакций. Например, две молекулы фосфатальдегида, встретившиеся на поверхности минерала, реагировали между собой с образованием фосфорилированной углеводной молекулы – возможного предшественника рибонуклеиновой кислоты (рис. 2).

А может быть, жизнь возникла в районах вулканической деятельности? Непосредственно после образования Земля представляла собой огнедышащий шар магмы. При извержениях вулканов и с газами, высвобождавшимися из расплавленной магмы, на земную поверхность выносились разнообразные химические вещества, необходимые для синтеза органических молекул. Так, молекулы угарного газа, оказавшись на поверхности минерала пирита, обладающего каталитическими свойствами, могли реагировать с соединениями, имевшими метильные группы, и образовывать уксусную кислоту, из которой затем синтезировались другие органические соединения (рис. 3).

Впервые получить органические молекулы – аминокислоты – в лабораторных условиях, моделирующих те, что были на первобытной Земле, удалось американскому ученому Стэнли Миллеру в 1952 г. Тогда эти эксперименты стали сенсацией, и их автор получил всемирную известность. В настоящее время он продолжает заниматься исследованиями в области предбиотической (до возникновения жизни) химии в Калифорнийском университете. Установка, на которой был осуществлен первый эксперимент, представляла собой систему колб, в одной из которых можно было получить мощный электрический разряд при напряжении 100 000 В.

Миллер заполнил эту колбу природными газами – метаном, водородом и аммиаком, которые присутствовали в атмосфере первобытной Земли. В колбе, расположенной ниже, было небольшое количество воды, имитирующей океан. Электрический разряд по своей силе приближался к молнии, и Миллер ожидал, что под его действием образуются химические соединения, которые, попав затем в воду, прореагируют друг с другом и образуют более сложные молекулы.

Результат превзошел все ожидания. Выключив вечером установку и вернувшись на следующее утро, Миллер обнаружил, что вода в колбе приобрела желтоватую окраску. То, что образовалось, оказалось бульоном из аминокислот – строительных блоков белков. Таким образом этот эксперимент показал, как легко могли образоваться первичные ингредиенты живого. Всего-то и нужны были – смесь газов, маленький океан и небольшая молния.

Другие ученые склонны считать, что древняя атмосфера Земли отличалась от той, которую моделировал Миллер, и состояла, скорее всего, из углекислого газа и азота. Используя эту газовую смесь и экспериментальную установку Миллера, химики попытались получить органические соединения. Однако их концентрация в воде была такой ничтожной, как если бы растворили каплю пищевой краски в плавательном бассейне. Естественно, трудно себе представить, как могла возникнуть жизнь в таком разбавленном растворе.

Если действительно вклад земных процессов в создание запасов первичного органического вещества был столь незначителен, то откуда оно вообще взялось? Может быть, из космоса? Астероиды, кометы, метеориты и даже частицы межпланетной пыли могли нести на себе органические соединения, включая аминокислоты. Эти внеземные объекты могли обеспечить попадание в первичный океан или небольшой водоем достаточного для зарождения жизни количества органических соединений.

Последовательность и временной интервал событий, начиная от образования первичного органического вещества и кончая появлением жизни как таковой, остается и, наверное, навсегда останется загадкой, волнующей многих исследователей, равно как и вопрос, что. собственно, считать жизнью.

В настоящее время существует несколько научных определений жизни, но все они не точны. Одни из них настолько широки, что под них попадают такие неживые объекты, как огонь или кристаллы минералов. Другие – слишком узки, и в соответствии с ними мулы, не дающие потомства, не признаются живыми.

Одно из наиболее удачных определяет жизнь как самоподдерживающуюся химическую систему, способную вести себя в соответствии с законами дарвиновской эволюции. Это значит, что, во-первых, группа живых особей должна производить подобных себе потомков, которые наследуют признаки родителей. Во-вторых, в поколениях потомков должны проявляться последствия мутаций – генетических изменений, которые наследуются последующими поколениями и обуславливают популяционную изменчивость. И в-третьих, необходимо, чтобы действовала система естественного отбора, в результате которого одни особи получают преимущество перед другими и выживают в изменившихся условиях, давая потомство.

Какие же элементы системы были необходимы, чтобы у нее появились характеристики живого организма? Большое число биохимиков и молекулярных биологов считают, что необходимыми свойствами обладали молекулы РНК. РНК – рибонуклеиновые кислоты – это особенные молекулы. Одни из них могут реплицироваться, мутировать, таким образом передавая информацию, и, следовательно, они могли участвовать в естественном отборе. Правда, они не способны сами катализировать процесс репликации, хотя ученые надеются, что в недалеком будущем будет найден фрагмент РНК с такой функцией. Другие молекулы РНК задействованы в “считывании” генетической информации и передаче ее на рибосомы, где происходит синтез белковых молекул, в котором принимают участие молекулы РНК третьего типа.

Таким образом самая примитивная живая система могла быть представлена молекулами РНК, удваивающимися, подвергающимися мутациям и подверженными естественному отбору. В ходе эволюции на основе РНК возникли специализированные молекулы ДНК – хранители генетической информации – и не менее специализированные молекулы белка, взявшие на себя функции катализаторов синтеза всех известных в настоящее время биологических молекул.

В некий момент времени “живая система” из ДНК, РНК и белка нашла приют внутри мешочка, образованного липидной мембраной, и эта более защищенная от внешних воздействий структура послужила прототипом самых первых клеток, давших начало трем основным ветвям жизни, которые представлены в современном мире бактериями, археями и эукариотами. Что касается даты и последовательности появления таких первичных клеток, то это остается загадкой. Кроме того, по простым вероятностным оценкам для эволюционного перехода от органических молекул к первым организмам не хватает времени – первые простейшие организмы появились слишком внезапно.

В течение многих лет ученые полагали, что жизнь вряд ли могла возникнуть и развиваться в тот период, когда Земля постоянно подвергалась столкновениям с большими кометами и метеоритами, а завершился этот период примерно 3,8 млрд лет тому назад. Однако недавно в самых древних на Земле осадочных породах, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет по крайней мере 3,86 млрд лет. Значит, первые формы жизни могли возникнуть за миллионы лет до того, как прекратилась бомбардировка нашей планеты крупными космическими телами. Но тогда возможен и совсем другой сценарий (рис. 4).

Падавшие на Землю космические объекты могли сыграть центральную роль в возникновении жизни на нашей планете, так как, по мнению ряда исследователей, клетки, подобные бактериям, могли возникнуть на другой планете и затем уже попасть на Землю вместе с астероидами. Одно из свидетельств в пользу теории внеземного происхождения жизни было обнаружено внутри метеорита, по форме напоминающего картофелину и названного ALH84001. Первоначально этот метеорит был частичкой марсианской коры, которая затем была выброшена в космос в результате взрыва при столкновении огромного астероида с поверхностью Марса, происшедшего около 16 млн лет назад. А 13 тыс. лет назад после длительного путешествия в пределах Солнечной системы этот осколок марсианской породы в виде метеорита приземлился в Антарктике, где и был недавно обнаружен. При детальном исследовании метеорита внутри него были обнаружены палочковидные структуры, напоминающие по форме окаменелые бактерии, что дало повод для бурных научных споров о возможности жизни в глубине марсианской коры. Разрешить эти споры удастся не ранее 2005 г., когда Национальное управление по аэронавтике и космическим исследованиям США осуществит программу полета на Марс межпланетного корабля для отбора проб марсианской коры и доставки образцов на Землю. И если ученым удастся доказать, что микроорганизмы когда-то населяли Марс, то о внеземном возникновении жизни и о возможности занесения жизни из Космоса можно будет говорить с большей долей уверенности (рис. 5).

Рис. 5. Наше происхождение от микробов.

Что мы унаследовали от древних форм жизни? Приведенное ниже сравнение одноклеточных организмов с клетками человека выявляет много черт сходства.

1. Половое размножение
Две специализированные репродуктивные клетки водорослей – гаметы, – спариваясь, образуют клетку, несущую генетический материал от обоих родителей. Это удивительно напоминает оплодотворение яйцеклетки человека сперматозоидом.

2. Реснички
Тоненькие реснички на поверхности одноклеточной парамеции колышутся подобно крошечным веслам и обеспечивают ей движение в поисках пищи. Похожие реснички устилают дыхательные пути человека, выделяют слизь и задерживают чужеродные частицы.

3. Захват других клеток
Амеба поглощает пищу, окружая ее псевдоподией, которая образуется выдвижением и удлинением части клетки. В организме животного или человека амебовидные кровяные клетки похожим образом выдвигают псевдоподию, чтобы поглотить опасную бактерию. Этот процесс назван фагоцитозом.

4. Митохондрии
Первые эукариотные клетки возникли, когда амеба захватила прокариотные клетки аэробных бактерий, которые превратились в митохондрии. И хотя бактерии и митохондрии клетки (поджелудочной железы) не слишком похожи, у них одна функция – вырабатывать энергию в процессе окисления пищи.

5. Жгутики
Длинный жгутик сперматозоида человека позволяет ему двигаться с большой скоростью. Бактерии и простейшие эукариоты тоже имеют жгутики с похожим внутренним строением. Он состоит из пары микротрубочек, окруженной девятью другими.

Эволюция жизни на Земле: от простого к сложному

В настоящее время, да, наверное, и в будущем, наука не сможет дать ответ на вопрос, как выглядел самый первый организм, появившийся на Земле, – предок, от которого берут начало три основные ветви древа жизни. Одна из ветвей – эукариоты, клетки которых имеют оформленное ядро, содержащее генетический материал, и специализированные органеллы: митохондрии, вырабатывающие энергию, вакуоли и др. К эукариотным организмам относятся водоросли, грибы, растения, животные и человек.

Вторая ветвь – это бактерии – прокариотные (доядерные) одноклеточные организмы, не имеющие выраженного ядра и органелл. И наконец, третья ветвь – одноклеточные организмы, именуемые археями, или архебактериями, клетки которых имеют такое же строение, как и у прокариот, но совсем другую химическую структуру липидов.

Многие архебактерии способны выживать в крайне неблагоприятных экологических условиях. Некоторые из них являются термофилами и обитают только в горячих источниках с температурой 90 °С и даже выше, где другие организмы попросту погибли бы. Превосходно чувствуя себя в таких условиях, эти одноклеточные организмы потребляют железо и серусодержащие вещества, а также ряд химических соединений, токсичных для других форм жизни. По мнению ученых, найденные термофильные архебактерии являются крайне примитивными организмами и в эволюционном отношении – близкими родственниками самых древних форм жизни на Земле.

Интересно, что современные представители всех трех ветвей жизни, наиболее похожие на своих прародителей, и сегодня обитают в местах с высокой температурой. Исходя из этого, некоторые ученые склонны считать, что, вероятнее всего, жизнь возникла около 4 млрд лет тому назад на дне океана вблизи горячих источников, извергающих потоки, богатые металлами и высокоэнергетическими веществами. Взаимодействуя друг с другом и с водой стерильного тогда океана, вступая в самые разнообразные химические реакции, эти соединения дали начало принципиально новым молекулам. Так, в течение десятков миллионов лет в этой “химической кухне” готовилось самое большое блюдо – жизнь. И вот около 4,5 млрд лет тому назад на Земле появились одноклеточные организмы, одинокое существование которых продолжалось весь докембрийский период.

Всплеск эволюции, давший начало многоклеточным организмам, произошел гораздо позже, немногим более полумиллиарда лет назад. Хотя размеры микроорганизмов столь малы, что в одной капле воды могут поместиться миллиарды, масштабы проведенной ими работы грандиозны.

Полагают, что первоначально в земной атмосфере и Мировом океане не было свободного кислорода, и в этих условиях жили и развивались лишь анаэробные микроорганизмы. Особым шагом в эволюции живого было возникновение фотосинтезирующих бактерий, которые, используя энергию света, превращали углекислый газ в углеводные соединения, служащие пищей для других микроорганизмов. Если первые фотосинтетики выделяли метан или сероводород, то появившиеся однажды мутанты начали вырабатывать в процессе фотосинтеза кислород. По мере накопления кислорода в атмосфере и водах анаэробные бактерии, для которых он губителен, заняли бескислородные ниши.

В древних ископаемых остатках, найденных в Австралии, возраст которых исчисляется 3,46 млрд лет, были обнаружены структуры, которые считают останками цианобактерий – первых фотосинтезирующих микроорганизмов. О былом господстве анаэробных микроорганизмов и цианобактерий свидетельствуют строматолиты, встречающиеся в мелководных прибрежных акваториях не загрязненных соленых водоемов. По форме они напоминают большие валуны и представляют интересное сообщество микроорганизмов, живущее в известняковых или доломитовых породах, образовавшихся в результате их жизнедеятельности. На глубину нескольких сантиметров от поверхности строматолиты насыщены микроорганизмами: в самом верхнем слое обитают фотосинтезирующие цианобактерии, вырабатывающие кислород; глубже обнаруживаются бактерии, которые до определенной степени терпимы к кислороду и не нуждаются в свете; в нижнем слое присутствуют бактерии, которые могут жить только в отсутствие кислорода. Расположенные в разных слоях, эти микроорганизмы составляют систему, объединенную сложными взаимоотношениями между ними, в том числе пищевыми. За микробной пленкой обнаруживается порода, образующаяся в результате взаимодействия остатков отмерших микроорганизмов с растворенным в воде карбонатом кальция. Ученые считают, что когда на первобытной Земле еще не было континентов и лишь архипелаги вулканов возвышались над поверхностью океана, мелководье изобиловало строматолитами.

В результате жизнедеятельности фотосинтезирующих цианобактерий в океане появился кислород, а примерно через 1 млрд лет после этого он начал накапливаться в атмосфере. Сначала образовавшийся кислород взаимодействовал с растворенным в воде железом, что привело к появлению окислов железа, которые постепенно осаждались на дне. Так в течение миллионов лет с участием микроорганизмов возникли огромные залежи железной руды, из которой сегодня выплавляется сталь.

Затем, когда основное количество железа в океанах подверглось окислению и уже не могло связывать кислород, он в газообразном виде ушел в атмосферу.

После того как фотосинтезирующие цианобактерии создали из углекислого газа определенный запас богатого энергией органического вещества и обогатили земную атмосферу кислородом, возникли новые бактерии – аэробы, которые могут существовать только в присутствии кислорода. Кислород им необходим для окисления (сжигания) органических соединений, а значительная часть получаемой при этом энергии превращается в биологически доступную форму – аденозинтрифосфат (АТФ). Этот процесс энергетически очень выгоден: анаэробные бактерии при разложении одной молекулы глюкозы получают только 2 молекулы АТФ, а аэробные бактерии, использующие кислород, – 36 молекул АТФ.

С появлением достаточного для аэробного образа жизни количества кислорода дебютировали и эукариотные клетки, имеющие в отличие от бактерий ядро и такие органеллы, как митохондрии, лизосомы, а у водорослей и высших растений – хлоропласты, где совершаются фотосинтетические реакции. По поводу возникновения и развития эукариот существует интересная и вполне обоснованная гипотеза, высказанная почти 30 лет назад американским исследователем Л.Маргулисом. Согласно этой гипотезе митохондрии, выполняющие функции фабрик энергии в эукариотной клетке, – это аэробные бактерии, а хлоропласты растительных клеток, в которых происходит фотосинтез, – цианобактерии, поглощенные, вероятно, около 2 млрд лет назад примитивными амебами. В результате взаимовыгодных взаимодействий поглощенные бактерии стали внутренними симбионтами и образовали с поглотившей их клеткой устойчивую систему – эукариотную клетку.

Исследования ископаемых останков организмов в породах разного геологического возраста показали, что на протяжении сотен миллионов лет после возникновения эукариотные формы жизни были представлены микроскопическими шаровидными одноклеточными организмами, такими как дрожжи, а их эволюционное развитие протекало очень медленными темпами. Но немногим более 1 млрд лет назад возникло множество новых видов эукариот, что обозначило резкий скачок в эволюции жизни.

Прежде всего это было связано с появлением полового размножения. И если бактерии и одноклеточные эукариоты размножались, производя генетически идентичные копии самих себя и не нуждаясь в половом партнере, то половое размножение у более высокоорганизованных эукариотных организмов происходит следующим образом. Две гаплоидные, имеющие одинарный набор хромосом половые клетки родителей, сливаясь, образуют зиготу, имеющую двойной набор хромосом с генами обоих партнеров, что создает возможности для новых генных комбинаций. Возникновение полового размножения привело к появлению новых организмов, которые и вышли на арену эволюции.

Три четверти всего времени существования жизни на Земле она была представлена исключительно микроорганизмами, пока не произошел качественный скачок эволюции, приведший к появлению высокоорганизованных организмов, включая человека. Проследим основные вехи в истории жизни на Земле по нисходящей линии.

1,2 млрд лет назад произошел взрыв эволюции, обусловленный появлением полового размножения и ознаменовавшийся появлением высокоорганизованных форм жизни – растений и животных.

Образование новых вариаций в смешанном генотипе, возникающем при половом размножении, проявилось в виде биоразнообразия новых форм жизни.

2 млрд лет назад появились сложноорганизованные эукариотные клетки, когда одноклеточные организмы усложнили свое строение за счет поглощения других прокариотных клеток. Одни из них – аэробные бактерии – превратились в митохондрии – энергетические станции кислородного дыхания. Другие – фотосинтетические бактерии – начали осуществлять фотосинтез внутри клетки-хозяина и стали хлоропластами в клетках водорослей и растений. Эукариотные клетки, имеющие эти органеллы и четко обособленное ядро, включающее генетический материал, составляют все современные сложные формы жизни – от плесневых грибов до человека.

3,9 млрд лет назад появились одноклеточные организмы, которые, вероятно, выглядели, как современные бактерии, и архебактерии. Как древние, так и современные прокариотные клетки устроены относительно просто: они не имеют оформленного ядра и специализированных органелл, в их желеподобной цитоплазме располагаются макромолекулы ДНК – носители генетической информации, и рибосомы, на которых происходит синтез белка, а энергия производится на цитоплазматической мембране, окружающей клетку.

4 млрд лет назад загадочным образом возникла РНК. Возможно, что она образовалась из появившихся на первобытной земле более простых органических молекул. Полагают, что древние молекулы РНК имели функции носителей генетической информации и белков-катализаторов, они были способны к репликации (самоудвоению), мутировали и подвергались естественному отбору. В современных клетках РНК не имеют или не проявляют этих свойств, но играют очень важную роль посредника в передаче генетической информации с ДНК на рибосомы, в которых происходит синтез белков.

А.Л. Прохоров
По материалам статьи Ричарда Монастерски
в журнале National Geographic, 1998 г. No 3

Возникновение жизни на Земле - одна из самых впечатляющих загадок, которая будоражит умы человечества в течение всей нашей разумной истории. Сегодня мы хорошо знаем, когда появилась первая жизнь на нашей планете.

Это произошло около 4 млрд. тому назад, тогда как Cambrian explosion, т.е. период бурного появления многоклеточных организмов, соответствует времени 540 миллионов лет тому назад. С тех пор жизнь на Земле совершенствовалась в течение длительного времени, вследствие Дарвиновской эволюции. Огромные изменения, которые произошли в жизни человечества и во Вселенной, показывают, что наша эволюция даже ускоряется. Наша технология и сама жизнь становятся всё более и более совершенными. Мы движемся вперёд с огромным ускорением, и мы не знаем сегодня, что может стать результатом этих ускорений.

Как же возникла первая жизнь на Земле? В Книге Бытия утверждается, что жизнь, включая самого человека, была создана богом из земной пыли (“The God formed man of dust of the ground”, Genesis). Любопытно, что, в общем, это соответствует действительности, хотя естественно и не объясняется как же это произошло на самом деле. Ответ на этот вопрос может быть найден с помощью науки, задачей которой является объяснение естественных процессов внутри нашей Вселенной. Наука не оперирует не доказанными утверждениями. Цель науки не только проследить все этапы возникновения жизни на Земле, но и воспроизвести эти этапы в лабораторных условиях, как, например, физики не только объяснили механизмы термоядерных реакций внутри Солнца, высвобождающие гигантскую энергию, но и создали водородную бомбу, работающую на основе тех же принципов. Физики называют её маленькое Солнце на Земле. Немецкий учёный Г. Бете стал лауреатом Нобелевской премии за объяснение термоядерных процессов внутри Солнца.

Сегодня учёными доказано, что живые организмы возникли из неживой материи в длинной цепочке превращений от простых молекул до первой жизни - бактерии. Бактерия - это одноклеточный организм, тогда как сложные живые структуры являются многоклеточными. Например, человек состоит из триллиона клеток, в то время как бактерия лишь из одной. Более того, используя эти цепочки, учёные пытаются создать в лабораторных условиях полностью самовоспроизводящие искусственные организмы. Эти исследования позволяют проверить: является ли правильным наше понимание сложных процессов, приведших к возникновению первой жизни. В 2009 г. учёные создали в лаборатории первую молекулярную систему, которая копировала себя и могла эволюционировать.

Биологи нашли способ формирования сложных генетических молекул (РНК и ДНК), используя простые молекулы (О, С, N, Р), существовавшие на ранней стадии развития Земли несколько миллиардов лет тому назад. Открытие структуры РНК и ДНК позволяет понять ключевую особенность биологических молекул - копировать себя и эволюционировать. ДНК - это сложная молекула с молекулярной массой в один триллион, тогда как РНК имеет молекулярную массу всего 35000. Напомню, что молекулярная масса воды равна 18, а углерода 12. Основными элементами жизни на Земле являются вода и углерод. Углерод способен вступать в различные химические связи с другими элементами и производить сложные органические молекулы, включая липиды, карбогидраты, протеины и генетические молекулы РНК и ДНК, которые являются основными молекулами жизни. Поэтому жизнь на нашей Земле - это carbon - based life, хотя в других местах Вселенной возможны и другие формы жизни, например, silicon - based life.

Известно, что основными элементами во Вселенной являются водород и гелий. Внимательный читатель может спросить, каким же образом сложные молекулы или тяжёлые элементы, отличные от водорода и гелия, появились на нашей планете. Кто их «принёс» на Землю? Ответ на этот вопрос нам хорошо известен из астрономии: так называемые сверхмассивные звёзды производят в своих недрах многие известные нам химические элементы вследствие различных термоядерных реакций. После гибели таких звёзд они выбрасывают эти элементы внутрь галактики, которые становятся частью межзвёздной пыли и планет. Все тяжёлые элементы на Земле - это результат взрыва сверхновых звёзд, которые в конечном счёте обусловили появление первой жизни на Земле.

Без этих элементов жизнь была бы просто невозможной. Мы можем даже утверждать (возможно, с гордостью!), что являемся частью звёздного вещества (“We are star stuff!”). Например, наличие железа в нашем организме, которое определяет цвет нашей крови, является результатом производства железа внутри звёзд, который высвобождается после гибели звезды. Спекральный анализ вещества внутри звёзд и галактик показывает, что все тела во Вселенной состоят из одинакового набора элементов, составляющих таблицу Менделеева, а все живые организмы, включая растительный мир, имеют единого предка (a common ancestor), т.е. они появились из одного и того же корня дерева жизни. Само дерево жизни состоит из трёх основных частей (eukarya, archaea, bacteria) и лишь две ветки “eukarya” включают в себя весь растительный и животный миры. Жизнь на Земле возникла не сразу, а после почти 10 млрд. лет с момента Big Bang, когда появились все необходимые условия для возникновения первой жизни. Интересно, что наша Вселенная также произошла в результате гигантского взрыва из одной «точки». Эта «точка», которую физики называют “singularity”, имела чрезвычайно маленький размер и почти бесконечную плотность. Вследствие инфляции (быстрое расширение) и ускорений наша Вселенная стала сегодня гигантской. Свет может пересечь Вселенную лишь за 14 млрд. лет, хотя и покрывает расстояние от Земли до Солнца всего за восемь минут.

Вернёмся однако к основному вопросу этой статьи - как возникла первая жизнь на Земле. Два выдающихся учёных из the University of Chicago L.Miller and H.Urey ещё в 1950-х годах провели интереснейший эксперимент, который продемонстрировал, что жизнь могла быть сформирована естественным путём из набора различных молекул (H2. H2O, CH4, NH3), существовавших на ранней Земле, и серии химических реакций. Эксперимент показал, что основные молекулы жизни - аминокислоты (протеины) и нуклеиновые кислоты (основания РНК и ДНК) - могут быть легко получены из молекул, которые имелись в первичной атмосфере ранней Земли. Они поместили в стеклянную трубку воду, водород, метан и аммоний и пропустили через неё сильный электрический ток, который является аналогом молнии в природе. Через неделю в трубке были обнаружены различные органические молекулы, включая протеины. Последние ответственны за все сложные метаболические функции живой клетки. Однако, подобные эксперименты, хотя и явились первым важным шагом на пути от неживой материи к первой жизни, они не могли объяснить многие другие процессы, включающие переход от аминокислот (протеинов) к первой жизни и, в частности, каким образом примитивная клетка могла воспроизводить себя, эволюционировала, т.е. как она приводила к появлению новой жизни.

В последнее время учёные сумели объяснить все основные процессы, каким образом первые живые организмы на Земле возникли из неживой материи (например, журнал “Scientific American”, September, 2009). Эти процессы включают формирование нуклеотидов, состоящих из сахаров, фосфатов, оснований цианидов, ацетилена и воды, генетические молекулы РНК и ДНК, а также протоклетки, дающей рост первой жизни. Молекула РНК может быть сформирована из простых молекул имеющихся на ранней Земле до формирования первой жизни. Она была первым генетическим материалом сформировавшим жизнь на Земле вместе с ДНК, явившимся результатом эволюции позже. РНК порождает ДНК, которая в свою очередь порождает протеины. «РНК мир» включает в себя появление первого живого организма - протоклетки с РНК геномом, способной к самокопированию и Дарвиновской эволюции, тогда как «ДНК мир» включает бактериальную клетку с ДНК геномом, протеины и начало дерева жизни с общим предком для всего живого на Земле. Оба РНК и ДНК имеют длинные основания (от 2 до 40 в случае РНК и от 1000 до миллиона в случае типичного гена), которые включают сахара, фосфаты и простые молекулы - цианид, ацетилен, формальдегид и воду, имевшихся в ранней Земле. Нуклеиновые кислоты (РНК и ДНК) ответственны за генетический код и дают инструкции для всех процессов внутри клетки. Чтобы образовать протеины, нуклеиновые кислоты должны сформировать длинные и сложные цепи. Все молекулы ДНК во всех живых организмах на Земле имеют одинаковую структуру, хотя и разный набор генов, и отличаются друг от друга различным подключением их ДНК.

Итак, на первом этапе простые и органические молекулы, а также различные химические реакции привели к образованию нуклеотидов. Три компоненты нуклеотидов - сахара, фосфаты и нуклеиновые основания - образовались спонтанно из простых молекул. Затем нуклеотиды соединившись дали начало первой генетической молекуле - РНК, а затем, на более поздней стадии развития, молекулу ДНК. Нуклеиновые кислоты, представляющие совокупность нуклеотидов, содержат генетическую информацию. Следующий этап - образование примитивной клетки с РНК геномом, включающая мембрану и способной к самокопированию путём деления. Протоклетка начала эволюционировать. Метаболизм, включающий серию химических реакций, позволил протоклетке получать энергию из окружающей среды. Следующий этап - образование ДНК и появление новой клетки с ДНК геномом, играющей роль первичной генетической молекулы. РНК теперь выполняет промежуточную роль между ДНК и протеином. Возникает первая бактерия с ДНК геномом и мембраной. Она способна к самокопированию и способна эволюционировать. Если раньше РНК была ответственна за образование протеинов, теперь протеины принимают на себя функции РНК в осуществлении самокопирования клетки и метаболических процессов. Интересно, что старый парадокс - что появилось раньше «курица или яйцо» - находит на основе этих процессов простое объяснение: сначала была курица (нуклеиновые кислоты), а затем уже появилось яйцо (протеины). Затем протеины (яйцо) служили началом образования нуклеиновых кислот (курица).

Жизнь - это химическая система способная к самокопированию и Дарвиновской эволюции. Э. Шредингер, один из основателей квантовой механики, в своей книге «Жизнь с Точки Зрения Физика» дал следующее определение жизни: “The living systems is self-assemble against nature’s tendency toward disorder, or entropy”.

Подведём итоги. Жизнь началась после того как химические молекулы ранней Земли сформировали нуклеотиды, важные элементы РНК. Затем образовалась протоклетка с РНК геномом, на следующем этапе образовалась ДНК и первая бактерия с ДНК геномом. Бактерии оставались без изменений миллиарды лет и начали эволюционировать в более сложные организмы, когда началась эра под названием Cambrian explosion, когда мир животных эволюционировал из маленьких и примитивных организмов в многоклеточные организмы. В это же время на основе Дарвиновской эволюции появилось огромное разнообразие мира животных и около 5 млн. лет тому назад появились первые человекоподобные существа hominids. Недавно был обнаружен hominid Ardi, которому 4.4 млн. лет и который, возможно, является первой фазой в эволюции человека. Современный человек homo sapiens появился примерно 50,000-100,000 лет тому назад на юго-востоке Африки и позднее распространился по всему миру. 5000 лет тому назад были построены Египетские пирамиды. Около двести лет назад мы стали технологической цивилизацией, когда было открыто электричество, появились паровые машины и самолёты. Если это время сравнить с возрастом нашей Вселенной (14 млрд. лет), то оно составляет лишь 0.00001% от этого времени, т.е. мы являемся молодой цивилизацией, хотя и во многом преуспели. Другое сравнение основано на использовании космического календаря. Если принять, что вся история Вселенной равнялась одному году, то первые современные люди появились лишь две минуты назад, 11 секунд назад были построены египетские пирамиды, одну секунду назад Галилей и Кеплер доказали, что солнечной система является гелиоцентрической и лишь полсекунды назад мы стали технологической цивилизацией.

Давайте заглянем в наше будущее и зададим себе вопрос - закончилась ли наша эволюция. Чтобы ответить на этот вопрос нам следует понять, почему происходит эволюция, т.е. изменения в нашем организме во времени, и появляются ли в нашем геноме новые гены. Ответ на второй вопрос найден - да, дополнительные гены появляются и наша эволюция не только продолжается, но и ускоряется во времени. Ева Яблонски, теоретик в области биологии из Тель-авивского университета, опубликовала результаты своих исследований, согласно которым имеется более ста наследственных изменений, которые отсутствовали в последовательности ДНК. Эти изменения охватывают бактерии, грибы, растения, а также животных. Токсические вещества, диета и даже стресс могут быть причиной изменений в геноме. Мутации - причина возникновения новых ген. Сегодня мы изменяемся быстрее, чем за любые предыдущие периоды нашей истории.

Интересно, что сравнительно недавно было открыто ускорение нашей Вселенной. Нет ли какой-либо взаимосвязи между ускорениями Вселенной и ускорением нашей эволюции? Чтобы объяснить причину ускорения Вселенной, физики предположили существование тёмной энергии, т.е. особой силы отталкивания (a repulsive force), которая обусловливает ускорение Вселенной. Сегодня мы знаем немного о природе этой силы, несмотря на то, что сотни учёных around the world пытаются разгадать её структуру.

Время - самая фундаментальная характеристика Вселенной и оно ответственно за все изменения в нашем мире. Причина изменений в мире, возможно, состоит в том, что температура космоса сильно изменилась - от 1032К во времена Big Bang (эта температура триллион триллионов раз превышает температуру в центре самых горячих звёзд) до 3К сегодня (-270С) в течение 14 млрд. лет. Эта температура измерена по спектру остаточного излучения космоса, которое заполняет всю нашу Вселенную и которое является ярким доказательством реальности Big Bang и того факта, что было начало мира. Такое резкое уменьшение температуры космоса связано с её расширением (inflation). Разумеется, это расширение и спад температуры не могут не отражаться на скорости всех процессов внутри Вселенной, обусловливая изменения не только Вселенной, но и влияют на темпы нашей эволюции, которая будет продолжаться всегда, пока наша Вселенная существует и изменяется во времени. Если температура космоса упадёт до нуля, наша Вселенная погибнет, что будет означать конец эволюции и самой жизни. Любопытно, что из четырёх сценариев развития нашей Вселенной, которые рассматриваются в астрономии, имеется доказательство, что наша Вселенная в конечном счёте погибнет, вследствие безудержного расширения и спада температуры до абсолютного нуля. Такой вывод основан на анализе данных о взрывах так называемых «белых карликов» (white dwarf supernova explosion).

Тогда другой Big Bang возвестит о начале новой вселенной и нового мира. Эта новая вселенная пройдёт совершенно другой путь развития и в ней будут другие законы физики с другими фундаментальными постоянными, такими как скорость света, масса электрона, гравитационная постоянная и т.д., и, разумеется, другой жизнью. Сегодня учёные обсуждают вероятность существования других вселенных (multiverse), в которых также возможна жизнь, но основанная на других принципах и других законах природы.

Илья Гулькаров, Чикаго

Живое на земле - откуда мы? В версиях недостатка нет - от сугубо научных до самых фантастических. Человечество ищет ответ на этот вопрос уже тысячелетия. Ответить на него попытался известный российский биофизик Всеволод Твердислов в ходе лекции, состоявшейся в образовательном центре «Сириус». Он объяснил, почему на Земле существует лишь один живой организм, что общего между слизевиком и железными дорогами в Токио и как нужно искать инопланетян. «Лента.ру» приводит основные тезисы его выступления.

Три вопроса

В науке для просвещенного человечества существует всего три вопроса: как появилась Вселенная, как в ней зародилась жизнь и как живое научилось думать. Чтобы разобраться в столь глобальных темах, мыслить нужно масштабно, не в рамках какой-либо одной конкретной науки.

Очень многие процессы можно объяснить с помощью такого понятия, как «самоорганизация активных сред». Активная среда энергетически и информационно совмещает разнородные процессы в пространстве и времени. Такие разные, казалось бы, явления, как распространение огня в степном пожаре, распространение слухов и инфекций, валют или языков объясняются одинаково, если рассматривать их с позиций биофизики.

Биофизика - раздел биологии, изучающий физические аспекты существования живой природы на всех ее уровнях, от молекул и клеток до биосферы в целом, а также наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факторов. Биофизика призвана выявлять связи между физическими механизмами, лежащими в основе организации живых объектов, и биологическими особенностями их жизнедеятельности.

Иными словами, механизмы самоорганизации в физико-химических, биологических, экологических и социальных системах можно рассматривать с общих позиций. Имея представление о самоорганизации активных сред, можно создать модели, которые описывают такие несхожие на первый взгляд процессы, как работа лазера, свертывание крови, химические реакции, биение сердца или появление годовых колец у дерева.

Еще Аристотель утверждал: «Правильно в философии рассматривать сходство даже в вещах, далеко отстоящих друг от друга». Современная наука исходит из того, что это утверждение верно не только для философии.

Местные мы

Сколько на Земле организмов? Один: биосфера. Это единственный самодостаточный организм, под ногами у него таблица Менделеева, сверху аш ню падает, то есть кванты света. Ну и условия Земли, конечно, надо принимать во внимание.

Активная среда самоорганизуется по одинаковым принципам, независимо от ее размера. В качестве примера можно рассмотреть то, как по коре дуба расползается слизевик. Простейший организм, клетка размером в полмиллиметра, кусочек слизи, который может настолько разрастись, что покроет метры дерева.

Ученые провели эксперимент, взяв за основу географическую карту Токио и окрестностей. Вокруг слизевика, который как бы находится на месте японской столицы, они разложили пищу в тех местах, где располагаются соседние с Токио города и поселки. Слизевик начал движение в сторону пищи, прокладывая к ней каналы - «тропы». Когда исследователи сравнили схему движения подопытного организма и реальную карту японских транспортных артерий, они совпали. Все активные среды самоорганизуются, подчиняясь одним и тем же законам.

Самоорганизация - основа всего живого на земле. При этом важно учитывать, что определяется эта самоорганизация прежде всего физическими законами - даже в биологии, хотя люди привыкли трактовать биологию через химические соединения. Если речь идет о наследственности, то вспоминают ДНК. Если говорят о биологических рабочих инструментах, то подразумевают белки и ферменты. Если слышат об оболочке клетки, то на ум приходят липидные мембраны.

В результате даже астрономы, когда ищут жизнь во Вселенной, ориентируются на углеродные соединения, напоминающие аминокислоты. Если встречается что-то, напоминающее нуклеиновые кислоты, то делается предположение о существовании там форм жизни. Но ведь совершенно не очевидно, что вне Земли будут такие же ДНК, как здесь.

Как происходит естественный отбор на Земле? Природа предпочитает одни кислоты и отвергает другие не потому, что они ей нравятся или не нравятся. И даже не сами аминокислоты отбираются - природа выбирает среди разных физических форм принципы эффективности: самая эффективная побеждает. А значит, и внеземные цивилизации надо искать не через ДНК, из которых состоим мы, люди, а через физические формы потребления энергии.

На этом основана концепция сферы Дайсона, разработанная американским астрофизиком Фрименом Дайсоном. Идею он, кстати, позаимствовал из книги «Создатель звезд» фантаста Олафа Стэплдона. Как он предлагал искать инопланетный разум? Необходимо создать в космосе тонкую сферическую оболочку большого радиуса, сопоставимого с радиусом планетных орбит, со звездой в центре. Предполагается, что развитая цивилизация инопланетян может использовать сферу для полной утилизации энергии звезды или для решения проблемы жизненного пространства. По энергетическим колебаниям инопланетяне и будут обнаружены.

Пока вне Земли не найдено ни одного даже самого примитивного соединения, какое не могло бы быть синтезировано на нашей планете. Все, что обнаружено в космосе, производится самой Землей сейчас. Иными словами, нет никаких доказательств, что жизнь на Землю была привнесена извне. Это опровергает гипотезу панспермии, которая предполагает, что зародыш жизни (например, споры микроорганизмов) был занесен на нашу планету из космоса, скажем, метеоритом.

Если на метеорите прилетит пять аминокислот, ведь из них еще нужно сделать клетку. Представьте, что у вас есть скрипка, барабан и фагот, но один лишь факт наличия этих музыкальных инструментов еще не означает, что у вас есть оркестр. В этом и состоит главная тайна зарождения жизни. Этот оркестр нам на Землю никто не привозил. Все соединения, которые обнаружены в космосе, получаются и на Земле - с помощью молний и естественных природных катализаторов.

Избегайте равновесия

Часто можно услышать выражение «этот организм находится в равновесии с окружающей средой». Физик данную фразу трактует однозначно: «этот организм мертв». Мы с вами принципиально неравновесные и удалены от термодинамического равновесия, и уж если говорить о наших отношениях с окружающей средой, то находимся мы в термодинамическом, энергетическом и материальном балансе. Это могут быть стационарные отношения или нестационарные, но никак не равновесные. Равновесие у нас может быть только на погосте.

Сама суть жизни - это взаимодействия разностей химических и электрических потенциалов, концентраций и так далее. Только в случае неравенства и неравновесия может идти химический процесс. С точки зрения биофизика, энергетическая жизнь - это парабола. В нижней точке жизнь замирает, в каком-то смысле ее там нет. Процессы самоорганизации активной среды начинаются тогда, когда заканчивается равновесие и система удаляется от него.

Если взять две системы с одинаковым электрическим потенциалом - неважно, сколь он велик, - то никакого движения зарядов быть не может. Нужна асимметрия. Это - главное условие начала процессов. Химическими процессами движет физика. На этом строятся современные системные биология и биофизика. И сейчас одно из самых перспективных направлений - это наука, которая с одной стороны включает в себя биофизику, а с другой - синергетику.

Синергетика, или теория сложных систем - междисциплинарное направление науки, изучающее общие закономерности явлений и процессов в сложных неравновесных системах (физических, химических, биологических, экологических, социальных и других) на основе присущих им принципов самоорганизации. Синергетика является междисциплинарным подходом, поскольку принципы, управляющие процессами самоорганизации, представляются одними и теми же безотносительно природы систем, и для их описания должен быть пригоден общий математический аппарат.

Знаменитый французский физик, лауреат Нобелевской премии Пьер Кюри сказал, что природой движет нарушение симметрии, само движение по сути есть искажение симметрии, ведь симметрия - это статика.

Надо учитывать, что природа часто не подчиняется тому, что физики по традиции называют «законом». Например, закон Гука - утверждение, согласно которому деформация, возникающая в упругом теле, прямо пропорциональна приложенной к нему силе. Но этот закон неприменим к большим деформациям - невозможно растянуть пружинку, к примеру, на 10 километров. Значит, не каждый закон физики является законом природы. Надо разбираться в пропорциональных линейных зависимостях. Тут становится очевидным, что удаленные от равновесия системы могут проходить гладкие участки и попадать в так называемые точки бифуркации - то есть раздвоения.

Очень часто (особенно политики) говорят, что развитие должно идти по пути эволюции, а не революции. Но эволюция, в том числе биологическая, после гладкого развития идет как раз через бифуркацию, и предсказать, какой она будет, пройдя точку раздвоения, очень сложно. Степень точности прогноза - примерно как у синоптиков. Вероятность стопроцентного совпадения маловероятна, так как даже сама природа не знает, как себя поведет, пройдя точку бифуркации.

Предельно упрощая, можно сказать, что жизнь на Земле представляет собой систему, состоящую из двух сопряженных подсистем - биосферы и человеческой «экономики». Каждая из них является иерархически организованной активной средой, ни одна из них уже не может существовать сама по себе.

Именно в этом направлении сейчас развивается наука о живом - в поиске соотношения между потоками энергии вещества и информации и пространственно-временной самоорганизации. Например, почему рыбы часто плавают большими косяками? Таким образом они снижают сопротивление воды для каждой отдельной движущейся рыбы. Но вдруг появляется акула, и косяк распадается. Это функционально, но и это - изменение симметрии. А если посмотреть на произошедшее с точки зрения биофизика, это - бифуркация.

На пороге нового прорыва

К началу XX века практически все классические фундаментальные науки вроде бы были завершены. Географические открытия сделаны, астрономы все ближайшие созвездия и устройство Солнечной системы описали, геологи все разведали, физика и химия завершены, уравнения Максвелла написаны, электромагнетизм понят, теоретическая механика усвоена, таблица Менделеева есть, люди понимают, как устроены органические соединения. Казалось, все известно - дальше двигаться некуда.

И вдруг прорыв: появляется квантовая механика, появляется теория относительности, квантовая механика приходит в химию и придает ей новый мощный импульс. Уже к середине XX века у классических наук образовалось огромное количество ответвлений: физика твердого тела, физика высокомолекулярных соединений, физика космоса и так далее. Науки рассыпались по огромному числу прикладных направлений. Владимир Иванович Вернадский, знаменитый русский и советский ученый-естествоиспытатель, писал: «Рост научного знания XX века быстро стирает грани между отдельными науками. Мы все больше специализируемся не по наукам, а по проблемам».

Благодаря этому произошел сильнейший рывок цивилизации, мощный прорыв. Но человечество, обрадовавшись сильному старту, весьма бездарно провело вторую половину XX века и начало XXI. Прикладные направления наук не дали миру ничего по сути нового, они постоянно обновляют оболочку уже старых идей. Например, атомные электростанции стали намного надежнее, но сам принцип их функционирования не изменился с 1950-х годов. Гаджеты становятся тоньше, мы говорим, что они более современные, но принципы их действия остаются прежними.

Для нового цивилизационного прорыва настало время сосредоточиться не на прикладных направлениях науки, а на фундаментальных, чтобы дать миру новый прорыв, который затем прикладные направления будут еще сто лет эксплуатировать.

Происходит новое соединение наук. Физика начала соединять два своих крайних крыла, совмещая представления о самом малом и самом большом, то есть элементарные частицы и Вселенную. Ученые плотно занимаются теорией Большого взрыва. Такие же процессы идут в биологии. Исследователи консолидируют свои знания о большом (биосфере) и малом (геноме).

Кстати, в неспособности научить видеть картину мира в целом заключается одно из слабых мест и современного образования: ученики и студенты получают много разрозненных сведений, существующих в сознании обособленно, не превращаясь в единое знание. Часто употребляемое выражение «клиповое мышление» как нельзя лучше описывает эту ситуацию.

Что даст объединение наук? Скоро узнаем и, возможно, удивимся. Знаменитый английский писатель Артур Кларк, один из так называемой «большой тройки научных фантастов», чье влияние не ограничивалось рамками литературы, в своей книге «Черты будущего» (1962 год) сформулировал «законы Кларка», и первый из них гласит: «Если заслуженный, умудренный жизненным опытом ученый говорит, что нечто в науке возможно, он почти наверняка прав. Если же он говорит, что нечто невозможно, он почти определенно ошибается».