¿Qué es un logaritmo para tontos? Resolver ecuaciones logarítmicas. La guía completa (2019)

Se desprende de su definición. Y entonces el logaritmo del número. b Residencia en A se define como el exponente al que se debe elevar un número a para obtener el numero b(El logaritmo existe sólo para números positivos).

De esta formulación se deduce que el cálculo x=log a b, equivale a resolver la ecuación ax=b. Por ejemplo, iniciar sesión 2 8 = 3 porque 8 = 2 3 . La formulación del logaritmo permite justificar que si b=a c, entonces el logaritmo del número b Residencia en a es igual Con. También está claro que el tema de los logaritmos está estrechamente relacionado con el tema de las potencias de un número.

Con logaritmos, como con cualquier número, puedes hacer operaciones de suma, resta y transformarnos en todos los sentidos posibles. Pero debido al hecho de que los logaritmos no son números completamente ordinarios, aquí se aplican sus propias reglas especiales, que se llaman propiedades principales.

Sumar y restar logaritmos.

Tomemos dos logaritmos con las mismas bases: registrar una x Y iniciar sesión y. Entonces es posible realizar operaciones de suma y resta:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

registrar un(X 1 . X 2 . X 3 ... x k) = registrar una x 1 + registrar una x 2 + registrar una x 3 + ... + iniciar sesión xk.

De teorema del cociente logaritmo Se puede obtener una propiedad más del logaritmo. Es de conocimiento común que el registro a 1= 0, por lo tanto

registro a 1 /b= iniciar sesión a 1 - registro un segundo= - iniciar sesión un segundo.

Esto significa que hay una igualdad:

iniciar sesión a 1 / b = - iniciar sesión a b.

Logaritmos de dos números recíprocos por la misma razón se diferenciarán entre sí únicamente por el signo. Entonces:

Registro 3 9 = - registro 3 1/9; registro 5 1/125 = - registro 5 125.

Expresiones logarítmicas, resolución de ejemplos. En este artículo veremos problemas relacionados con la resolución de logaritmos. Las tareas plantean la cuestión de encontrar el significado de una expresión. Cabe señalar que el concepto de logaritmo se utiliza en muchas tareas y comprender su significado es sumamente importante. En cuanto al Examen Estatal Unificado, el logaritmo se utiliza en la resolución de ecuaciones, en problemas aplicados y también en tareas relacionadas con el estudio de funciones.

Pongamos ejemplos para entender el significado mismo del logaritmo:


Lo esencial identidad logarítmica:

Propiedades de los logaritmos que siempre hay que recordar:

*El logaritmo del producto es igual a la suma de los logaritmos de los factores.

* * *

*El logaritmo de un cociente (fracción) es igual a la diferencia entre los logaritmos de los factores.

* * *

*El logaritmo de un exponente es igual al producto del exponente por el logaritmo de su base.

* * *

*Transición a una nueva fundación

* * *

Más propiedades:

* * *

El cálculo de logaritmos está estrechamente relacionado con el uso de propiedades de los exponentes.

Enumeremos algunos de ellos:

La esencia de esta propiedad es que cuando el numerador se transfiere al denominador y viceversa, el signo del exponente cambia al opuesto. Por ejemplo:

Un corolario de esta propiedad:

* * *

Al elevar una potencia a una potencia, la base sigue siendo la misma, pero los exponentes se multiplican.

* * *

Como has visto, el concepto de logaritmo en sí es simple. Lo principal es lo que se necesita. buena práctica, lo que da cierta habilidad. Por supuesto, se requiere conocimiento de fórmulas. Si no se ha desarrollado la habilidad de convertir logaritmos elementales, al resolver problemas simples es fácil cometer un error.

Practica, resuelve primero los ejemplos más simples del curso de matemáticas y luego pasa a los más complejos. En el futuro, definitivamente mostraré cómo se resuelven los logaritmos “feos”; estos no aparecerán en el Examen Estatal Unificado, pero son interesantes, ¡no te los pierdas!

¡Eso es todo! ¡Buena suerte para ti!

Saludos cordiales, Alexander Krutitskikh

P.D: Le agradecería que me hablara del sitio en las redes sociales.

Como sabes, al multiplicar expresiones con potencias, sus exponentes siempre suman (a b *a c = a b+c). Esta ley matemática fue deducida por Arquímedes y, más tarde, en el siglo VIII, el matemático Virasen creó una tabla de exponentes enteros. Fueron ellos quienes sirvieron para un mayor descubrimiento de los logaritmos. Se pueden encontrar ejemplos del uso de esta función en casi todos los lugares donde sea necesario simplificar una multiplicación engorrosa mediante una simple suma. Si dedicas 10 minutos a leer este artículo, te explicaremos qué son los logaritmos y cómo trabajar con ellos. En un lenguaje sencillo y accesible.

Definición en matemáticas

Un logaritmo es una expresión de la siguiente forma: log a b=c, es decir, el logaritmo de cualquier número no negativo (es decir, cualquier positivo) “b” a su base “a” se considera la potencia “c ” a lo cual es necesario elevar la base “a” para finalmente obtener el valor “b”. Analicemos el logaritmo usando ejemplos, digamos que hay una expresión log 2 8. ¿Cómo encontrar la respuesta? Es muy simple, necesitas encontrar una potencia tal que de 2 a la potencia requerida obtengas 8. Después de hacer algunos cálculos mentales, ¡obtenemos el número 3! Y eso es cierto, porque 2 elevado a 3 da la respuesta 8.

Tipos de logaritmos

Para muchos alumnos y estudiantes, este tema parece complicado e incomprensible, pero en realidad los logaritmos no dan tanto miedo, lo principal es comprender su significado general y recordar sus propiedades y algunas reglas. Hay tres especies individuales expresiones logarítmicas:

  1. Logaritmo natural en a, donde la base es el número de Euler (e = 2,7).
  2. Decimal a, donde la base es 10.
  3. Logaritmo de cualquier número b en base a>1.

Cada uno de ellos se resuelve de forma estándar, incluyendo simplificación, reducción y posterior reducción a un solo logaritmo mediante teoremas logarítmicos. Para obtener los valores correctos de los logaritmos, conviene recordar sus propiedades y la secuencia de acciones a la hora de resolverlos.

Reglas y algunas restricciones.

En matemáticas existen varias reglas-restricciones que se aceptan como axioma, es decir, no están sujetas a discusión y son la verdad. Por ejemplo, es imposible dividir números por cero y también es imposible extraer una raíz par de números negativos. Los logaritmos también tienen sus propias reglas, siguiendo las cuales puedes aprender fácilmente a trabajar incluso con expresiones logarítmicas largas y amplias:

  • La base “a” siempre debe ser mayor que cero, y no igual a 1, de lo contrario la expresión perderá su significado, porque “1” y “0” en cualquier grado siempre son iguales a sus valores;
  • si a > 0, entonces a b >0, resulta que “c” también debe ser mayor que cero.

¿Cómo resolver logaritmos?

Por ejemplo, la tarea es encontrar la respuesta a la ecuación 10 x = 100. Esto es muy fácil, debes elegir una potencia elevando el número diez a lo que obtenemos 100. Esto, por supuesto, es 10 2 = 100.

Ahora representemos esta expresión en forma logarítmica. Obtenemos log 10 · 100 = 2. Al resolver logaritmos, todas las acciones prácticamente convergen para encontrar la potencia a la que es necesario ingresar la base del logaritmo para obtener un número determinado.

Para determinar con precisión el valor de un grado desconocido, es necesario aprender a trabajar con una tabla de grados. Se parece a esto:

Como puedes ver, algunos exponentes se pueden adivinar intuitivamente si tienes una mente técnica y conocimientos de la tabla de multiplicar. Sin embargo, para valores mayores necesitarás una tabla de potencia. Puede ser utilizado incluso por aquellos que no saben nada sobre complejos temas matemáticos. La columna de la izquierda contiene números (base a), fila superior números es el valor de la potencia c a la que se eleva el número a. En la intersección, las celdas contienen los valores numéricos que son la respuesta (a c =b). Tomemos, por ejemplo, la primera celda con el número 10 y la elevamos al cuadrado, obtenemos el valor 100, que se indica en la intersección de nuestras dos celdas. ¡Todo es tan simple y fácil que incluso el humanista más verdadero lo entenderá!

Ecuaciones y desigualdades

Resulta que bajo ciertas condiciones el exponente es el logaritmo. Por tanto, cualquier expresión numérica matemática se puede escribir como una igualdad logarítmica. Por ejemplo, 3 4 =81 se puede escribir como el logaritmo en base 3 de 81 igual a cuatro (log 3 81 = 4). Para poderes negativos las reglas son las mismas: 2 -5 = 1/32 lo escribimos como un logaritmo, obtenemos log 2 (1/32) = -5. Una de las secciones más fascinantes de las matemáticas es el tema de los "logaritmos". Veremos ejemplos y soluciones de ecuaciones a continuación, inmediatamente después de estudiar sus propiedades. Ahora veamos cómo son las desigualdades y cómo distinguirlas de las ecuaciones.

Se da la siguiente expresión: log 2 (x-1) > 3 - es una desigualdad logarítmica, ya que el valor desconocido “x” está bajo el signo logarítmico. Y también en la expresión se comparan dos cantidades: el logaritmo del número deseado en base dos es mayor que el número tres.

La diferencia más importante entre ecuaciones logarítmicas y desigualdades es que las ecuaciones con logaritmos (ejemplo: logaritmo 2 x = √9) implican uno o más valores numéricos específicos en la respuesta, mientras que al resolver desigualdades, se definen como una región. valores aceptables y los puntos de interrupción de esta función. Como consecuencia, la respuesta no es un simple conjunto de números individuales, como en la respuesta a una ecuación, sino una serie o conjunto continuo de números.

Teoremas básicos sobre logaritmos

Al resolver problemas primitivos de encontrar los valores de un logaritmo, es posible que no se conozcan sus propiedades. Sin embargo, cuando se trata de ecuaciones o desigualdades logarítmicas, en primer lugar, es necesario comprender claramente y aplicar en la práctica todas las propiedades básicas de los logaritmos. Veremos ejemplos de ecuaciones más adelante; primero veamos cada propiedad con más detalle.

  1. La identidad principal se ve así: a logaB =B. Se aplica sólo cuando a es mayor que 0, distinto de uno y B es mayor que cero.
  2. El logaritmo del producto se puede representar en la siguiente fórmula: log d (s 1 * s 2) = log d s 1 + log d s 2. En este caso requisito previo es: d, s 1 y s 2 > 0; a≠1. Puedes dar una prueba de esta fórmula logarítmica, con ejemplos y solución. Sean log a s 1 = f 1 y log a s 2 = f 2, luego a f1 = s 1, a f2 = s 2. Obtenemos que s 1 * s 2 = a f1 *a f2 = a f1+f2 (propiedades de grados), y luego por definición: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, que es lo que había que demostrar.
  3. El logaritmo del cociente se ve así: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. El teorema en forma de fórmula toma la siguiente forma: log a q b n = n/q log a b.

Esta fórmula se llama "propiedad del grado de logaritmo". Se parece a las propiedades de los grados ordinarios, y no es sorprendente, porque todas las matemáticas se basan en postulados naturales. Veamos la prueba.

Sea log a b = t, resulta a t =b. Si elevamos ambas partes a la potencia m: a tn = b n ;

pero como a tn = (a q) nt/q = b n, entonces log a q b n = (n*t)/t, entonces log a q b n = n/q log a b. El teorema ha sido demostrado.

Ejemplos de problemas y desigualdades

Los tipos más comunes de problemas sobre logaritmos son ejemplos de ecuaciones y desigualdades. Se encuentran en casi todos los libros de problemas y también son una parte obligatoria de los exámenes de matemáticas. Para ingresar a una universidad o aprobar exámenes de ingreso en matemáticas, es necesario saber cómo resolver correctamente dichas tareas.

Desafortunadamente, no existe un plan o esquema único para resolver y determinar el valor desconocido del logaritmo, pero se pueden aplicar ciertas reglas a cada desigualdad matemática o ecuación logarítmica. En primer lugar, debe averiguar si la expresión se puede simplificar o conducir a apariencia general. Simplifica los largos expresiones logarítmicas posible si utilizas sus propiedades correctamente. Conozcámoslos rápidamente.

Al decidir ecuaciones logarítmicas, debemos determinar qué tipo de logaritmo tenemos: una expresión de ejemplo puede contener un logaritmo natural o uno decimal.

A continuación se muestran ejemplos ln100, ln1026. Su solución se reduce al hecho de que necesitan determinar la potencia a la que la base 10 será igual a 100 y 1026, respectivamente. Para resolver logaritmos naturales, es necesario aplicar identidades logarítmicas o sus propiedades. Veamos ejemplos de resolución de problemas logarítmicos de varios tipos.

Cómo utilizar fórmulas logarítmicas: con ejemplos y soluciones

Entonces, veamos ejemplos del uso de los teoremas básicos sobre logaritmos.

  1. La propiedad del logaritmo de un producto se puede utilizar en tareas donde es necesario expandir gran importancia números b en factores más simples. Por ejemplo, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. La respuesta es 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - como puede ver, usando la cuarta propiedad de la potencia del logaritmo, logramos resolver una expresión aparentemente compleja e irresoluble. Sólo necesitas factorizar la base y luego quitar los valores del exponente del signo del logaritmo.

Asignaciones del Examen Estatal Unificado

Los logaritmos se encuentran frecuentemente en exámenes de admisión, especialmente muchos problemas logarítmicos en el Examen Estatal Unificado (examen estatal para todos los graduados de la escuela). Por lo general, estas tareas están presentes no solo en la parte A (la más fácil parte de prueba examen), pero también en la parte C (las tareas más complejas y voluminosas). El examen requiere un conocimiento preciso y perfecto del tema "Logaritmos naturales".

Los ejemplos y soluciones a los problemas están tomados de fuentes oficiales. Opciones del examen estatal unificado. Veamos cómo se resuelven tales tareas.

Dado log 2 (2x-1) = 4. Solución:
reescribamos la expresión, simplificándola un poco log 2 (2x-1) = 2 2, por definición del logaritmo obtenemos que 2x-1 = 2 4, por lo tanto 2x = 17; x = 8,5.

  • Es mejor reducir todos los logaritmos a la misma base para que la solución no sea engorrosa ni confusa.
  • Todas las expresiones bajo el signo del logaritmo se indican como positivas, por lo tanto, cuando se saca como multiplicador el exponente de una expresión que está bajo el signo del logaritmo y como base, la expresión que queda bajo el logaritmo debe ser positiva.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Explíquelo de forma más sencilla. Por ejemplo, \(\log_(2)(8)\) es igual a la potencia a la que se debe elevar \(2\) para obtener \(8\). De esto queda claro que \(\log_(2)(8)=3\).

Ejemplos:

\(\log_(5)(25)=2\)

porque \(5^(2)=25\)

\(\log_(3)(81)=4\)

porque \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

porque \(2^(-5)=\)\(\frac(1)(32)\)

Argumento y base del logaritmo.

Cualquier logaritmo tiene la siguiente “anatomía”:

El argumento de un logaritmo generalmente se escribe en su nivel y la base se escribe en un subíndice más cercano al signo del logaritmo. Y esta entrada dice así: “logaritmo de veinticinco en base cinco”.

¿Cómo calcular el logaritmo?

Para calcular el logaritmo, debes responder la pregunta: ¿a qué potencia se debe elevar la base para obtener el argumento?

Por ejemplo, calcula el logaritmo: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) ¿A qué potencia se debe elevar \(4\) para obtener \(16\)? Obviamente el segundo. Es por eso:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) ¿A qué potencia se debe elevar \(\sqrt(5)\) para obtener \(1\)? ¿Qué poder hace que cualquier número uno? ¡Cero, por supuesto!

\(\log_(\sqrt(5))(1)=0\)

d) ¿A qué potencia se debe elevar \(\sqrt(7)\) para obtener \(\sqrt(7)\)? En primer lugar, cualquier número elevado a la primera potencia es igual a sí mismo.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) ¿A qué potencia se debe elevar \(3\) para obtener \(\sqrt(3)\)? Desde que sabemos lo que es potencia fraccionaria, y eso significa Raíz cuadrada es la potencia de \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Ejemplo : Calcular logaritmo \(\log_(4\sqrt(2))(8)\)

Solución :

\(\log_(4\sqrt(2))(8)=x\)

Necesitamos encontrar el valor del logaritmo, denotémoslo como x. Ahora usemos la definición de logaritmo:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

¿Qué conecta \(4\sqrt(2)\) y \(8\)? Dos, porque ambos números se pueden representar de dos en dos:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

A la izquierda usamos las propiedades del grado: \(a^(m)\cdot a^(n)=a^(m+n)\) y \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Las bases son iguales, pasamos a la igualdad de indicadores.

\(\frac(5x)(2)\) \(=3\)


Multiplica ambos lados de la ecuación por \(\frac(2)(5)\)


La raíz resultante es el valor del logaritmo.

Respuesta : \(\log_(4\sqrt(2))(8)=1,2\)

¿Por qué se inventó el logaritmo?

Para entender esto, resolvamos la ecuación: \(3^(x)=9\). Simplemente haga coincidir \(x\) para que la ecuación funcione. Por supuesto, \(x=2\).

Ahora resuelve la ecuación: \(3^(x)=8\). ¿A qué es igual x? Ese es el punto.

Los más inteligentes dirán: “X es un poco menos que dos”. ¿Cómo escribir exactamente este número? Para responder a esta pregunta, se inventó el logaritmo. Gracias a él, la respuesta aquí se puede escribir como \(x=\log_(3)(8)\).

Quiero enfatizar que \(\log_(3)(8)\), como cualquier logaritmo es solo un número. Sí, parece inusual, pero es breve. Porque si quisiéramos escribirlo como decimal, quedaría así: \(1.892789260714.....\)

Ejemplo : Resuelve la ecuación \(4^(5x-4)=10\)

Solución :

\(4^(5x-4)=10\)

\(4^(5x-4)\) y \(10\) no se pueden llevar a la misma base. Esto significa que no puedes prescindir de un logaritmo.

Usemos la definición de logaritmo:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Inviertamos la ecuación para que X esté a la izquierda.

\(5x-4=\log_(4)(10)\)

Antes que nosotros. Movamos \(4\) hacia la derecha.

Y no le tengas miedo al logaritmo, trátalo como a un número normal.

\(5x=\log_(4)(10)+4\)

Divide la ecuación por 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Esta es nuestra raíz. Sí, parece inusual, pero no eligen la respuesta.

Respuesta : \(\frac(\log_(4)(10)+4)(5)\)

Logaritmos decimales y naturales

Como se indica en la definición de logaritmo, su base puede ser cualquier número positivo excepto uno \((a>0, a\neq1)\). Y entre todas las bases posibles, hay dos que ocurren con tanta frecuencia que se inventó una notación corta especial para los logaritmos con ellas:

Logaritmo natural: un logaritmo cuya base es el número de Euler \(e\) (igual a aproximadamente \(2.7182818…\)), y el logaritmo se escribe como \(\ln(a)\).

Eso es, \(\ln(a)\) es lo mismo que \(\log_(e)(a)\)

Logaritmo decimal: un logaritmo cuya base es 10 se escribe \(\lg(a)\).

Eso es, \(\lg(a)\) es lo mismo que \(\log_(10)(a)\), donde \(a\) es algún número.

Identidad logarítmica básica

Los logaritmos tienen muchas propiedades. Uno de ellos se llama "Identidad logarítmica básica" y tiene este aspecto:

\(a^(\log_(a)(c))=c\)

Esta propiedad se deriva directamente de la definición. Veamos exactamente cómo surgió esta fórmula.

Recordemos una breve notación de la definición de logaritmo:

si \(a^(b)=c\), entonces \(\log_(a)(c)=b\)

Es decir, \(b\) es lo mismo que \(\log_(a)(c)\). Entonces podemos escribir \(\log_(a)(c)\) en lugar de \(b\) en la fórmula \(a^(b)=c\). Resultó \(a^(\log_(a)(c))=c\) - la identidad logarítmica principal.

Puedes encontrar otras propiedades de los logaritmos. Con su ayuda, puedes simplificar y calcular los valores de expresiones con logaritmos, que son difíciles de calcular directamente.

Ejemplo : Encuentra el valor de la expresión \(36^(\log_(6)(5))\)

Solución :

Respuesta : \(25\)

¿Cómo escribir un número como logaritmo?

Como se mencionó anteriormente, cualquier logaritmo es solo un número. Lo contrario también es cierto: cualquier número se puede escribir como un logaritmo. Por ejemplo, sabemos que \(\log_(2)(4)\) es igual a dos. Entonces puedes escribir \(\log_(2)(4)\) en lugar de dos.

Pero \(\log_(3)(9)\) también es igual a \(2\), lo que significa que también podemos escribir \(2=\log_(3)(9)\) . Lo mismo ocurre con \(\log_(5)(25)\), y con \(\log_(9)(81)\), etc. Es decir, resulta

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Por lo tanto, si lo necesitamos, podemos escribir dos como un logaritmo con cualquier base en cualquier lugar (incluso en una ecuación, incluso en una expresión, incluso en una desigualdad); simplemente escribimos la base al cuadrado como argumento.

Lo mismo ocurre con el triple: se puede escribir como \(\log_(2)(8)\), o como \(\log_(3)(27)\), o como \(\log_(4)( 64) \)... Aquí escribimos la base en el cubo como argumento:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Y con cuatro:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Y con menos uno:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

Y con un tercio:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Cualquier número \(a\) se puede representar como un logaritmo con base \(b\): \(a=\log_(b)(b^(a))\)

Ejemplo : Encuentra el significado de la expresión. \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Solución :

Respuesta : \(1\)

¿Qué es un logaritmo?

¡Atención!
Hay adicionales
materiales en la Sección Especial 555.
Para los que son muy "no muy..."
Y para los que “mucho…”)

¿Qué es un logaritmo? ¿Cómo resolver logaritmos? Estas preguntas confunden a muchos graduados. Tradicionalmente, el tema de los logaritmos se considera complejo, incomprensible y aterrador. Especialmente ecuaciones con logaritmos.

Esto es absolutamente falso. ¡Absolutamente! ¿No me crees? Bien. Ahora, en sólo 10 - 20 minutos usted:

1. entender que es un logaritmo.

2. Aprenda a resolver toda una clase de ecuaciones exponenciales. Incluso si no has oído nada sobre ellos.

3. Aprenda a calcular logaritmos simples.

Además, para ello sólo necesitarás conocer la tabla de multiplicar y cómo elevar un número a una potencia…

Siento que tienes dudas... Bueno, está bien, ¡marca el tiempo! ¡Ir!

Primero, resuelve esta ecuación en tu cabeza:

Si te gusta este sitio...

Por cierto, tengo un par de sitios más interesantes para ti).

Podrás practicar la resolución de ejemplos y descubrir tu nivel. Pruebas con verificación instantánea. Aprendamos, ¡con interés!)

Puede familiarizarse con funciones y derivadas.