PartMaker: автоматизированная разработка управляющих программ для современного оборудования с ЧПУ. G-код. Структура управляющей программы для станка с ЧПУ Вертикальный фрезерный многоцелевой станок

Современное машиностроительное производство трудно представить без станков с числовым программным управлением. Сегодня они широко применяются как на промышленных гигантах, так и на малых предприятиях. Несомненно, что успешное развитие машиностроительной промышленности невозможно без активного использования оборудования с ЧПУ и автоматизации производства.

Увеличение парка станков с ЧПУ приводит к повышению требований к технологической подготовке производства, в том числе к качеству разработки управляющих программ (УП).

Сегодня все основные разработчики САПР в составе своих программных комплексов предлагают модули для разработки УП для станков с ЧПУ. К достоинствам этих модулей можно отнести то, что, будучи интегрированными в системы автоматизированного проектирования и соответственно обеспечивая корректный обмен моделями между конструкторскими и технологическими модулями, они позволяют успешно разрабатывать УП для основных видов металлообрабатывающего оборудования со стандартными технологическими возможностями - для фрезерных, токарных и электроэрозионных станков. Недостатками же многих систем являются необходимость в высокой квалификации технологов для работы в CAM-системе, зачастую неинформативный интерфейс пользователя, необходимость выполнения многочисленных ручных операций, недостаточно развитые функции диагностики программ на предмет выявления ошибок, ограниченные возможности создания УП для наиболее современных или уникальных видов оборудования.

Решить все эти проблемы взялись разработчики специализированного программного обеспечения (ПО). Например, для проверки и оптимизации УП инженерно-консалтинговая компания СОЛВЕР (SOLVER) предлагает применять программный комплекс Vericut фирмы CGTech (США), позволяющий сократить время обработки на 30-50% .

Кроме того, на рынке программных продуктов для производства предлагается ПО для автоматизированной подготовки УП, о котором мы расскажем подробнее.

PartMaker: автоматизированная разработка УП

Для автоматизированной разработки УП для металлообрабатывающего оборудования с ЧПУ фирма СОЛВЕР предлагает (впервые в России) использовать программный комплекс PartMaker от компании IMCS (США). Наряду с подготовкой УП для традиционной группы металлообрабатывающих станков (токарных, фрезерных и электроэрозионных) это современное и эффективное ПО дает возможность разрабатывать программы для наиболее современного и уникального оборудования, в том числе для станков-автоматов продольного точения (SwissType) и многоцелевых токарно-фрезерных центров.

Модульная структура PartMaker позволяет приобретать лишь то ПО, которое является для предприятия актуальным на данный момент, и дооснащать программный комплекс новыми модулями по мере необходимости. В ПО входят пять основных модулей для разработки УП:

Для станков-автоматов продольного точения - SwissCAM;

Для токарно-фрезерных станков - Turn-Mill;

Для токарных станков — Turn;

Для фрезерных станков — Mill;

Для электроэрозионных станков - Wire EDM.

Удобный интерфейс пользователя: легкое освоение ПО, быстрая разработка УП

Основным достоинством PartMaker является простота создания и проверки УП. ПО работает под управлением Windows. Для упрощения и ускорения процессов разработки УП используется система графических и текстовых подсказок. Кроме того, в PartMaker применяется база данных обработки, позволяющая накапливать производственный опыт об использовании металлорежущего инструмента, режимах резания, а также о повторяющихся операциях. Все это облегчает освоение ПО и позволяет технологу (а не программисту) быстро пройти обучение и начать разрабатывать качественные программы.

Для программирования в PartMaker применяется современная методика визуального программирования . Детали со сложной обработкой разбиваются на группы плоскостей и поверхностей вращения, а при помощи картинок-подсказок выбирается нужный вид обработки. Стратегия обработки устанавливается пользователем. Например, можно выполнить полный цикл обработки одной поверхности, а затем перейти к обработке другой или же обработать все поверхности одним инструментом, заменить его следующим (согласно разработанной технологии) и снова обработать все поверхности.

Визуализация обработки возможна как на этапах создания технологических переходов, так и у всей программы в целом. Имитация процессов обработки осуществляется на экране компьютера с динамической трехмерной демонстрацией удаления материала. Есть возможность поворота, масштабирования и изменения точки и панорамы наблюдения. При этом можно наблюдать одновременную работу нескольких инструментов, а также процесс передачи детали в противошпиндель. Для заготовки возможно задание режима полупрозрачности, а также создание разреза, позволяющего увидеть процесс обработки внутренних полостей или закрытых зон. При четырехкоординатной обработке можно наблюдать вращение заготовки вокруг инструмента. Для автоматов продольного точения ПО моделирует перемещения прутка внутри направляющей люнетной втулки, позволяя увидеть реальный процесс обработки, происходящий на станке.

В PartMaker есть свой встроенный графический редактор для создания математических моделей обрабатываемых деталей с помощью графических примитивов (точек, линий, дуг, фасок и т.п.). Интерфейс пользователя разработан таким образом, чтобы максимально облегчить и ускорить процесс создания геометрии моделей. Этому способствуют и стандартные команды Windows: «Копировать», «Вырезать», «Вставить» и т.д. Предусмотрена возможность выполнения таких корректирующих операций, как сдвиг и поворот изображения. Кроме того, возможен импорт в PartMaker двумерных моделей в формате DXF и трехмерных моделей из любой системы CAD/CAM, включая Pro/Engineer, AutoCAD, SolidWorks, Unigraphics и др. При необходимости импортированные модели могут быть доработаны технологом, а затем возвращены обратно в систему конструирования.

Разработка УП для механической обработки

Программирование механической обработки в PartMaker ведется по технологическим переходам в зависимости от вида обработки (токарной или фрезерной), в том числе для токарно-фрезерных центров и автоматов продольного точения, и включает следующие возможности:

2-осевое фрезерование с 3-осевым позиционированием инструмента, обработка карманов с любым количеством выступов, с учетом попутного или встречного фрезерования, а также с введением режима коррекции;

Контурное фрезерование;

Управляющая программа для ЧПУ станка состоит из последовательности кадров и обычно начинается с символа начало программы (%) и заканчивается М02 или М30.

Каждый кадр программы представляет собой один шаг обработки и (в зависимости от ЧПУ) может начинаться с номера кадра (N1...N10 и т.д.), а заканчиваться символом конец кадра (;).

Кадр управляющей программы состоит из операторов в форме слов (G91, M30, X10. и т.д.). Слово состоит из символа (адреса) и цифры, представляющее арифметическое значение.

Адреса X, Y, Z, U, V, W, P, Q, R, A, B, C, D, E являются размерными перемещениям, используют для обозначения координатных осей, вдоль которых осуществляются перемещения.

Слова, описывающие перемещения, могут иметь знак (+) или (-). При отсутствии знака перемещение считается положительным.

Адреса I, J, K означают параметры интерполяции.

G - подготовительная функция.

M - вспомогательная функция.

S - функция главного движения.

F - функция подачи.

T, D, H - функции инструмента.

Символы могут принимать другие значения в зависимости от конкретного УЧПУ.

Подготовительные функции (G коды)

G00 - быстрое позиционирование.

Функция G00 используется для выполнения ускоренного перемещения режущего инструмента к позиции обработки или к безопасной позиции. Ускоренное перемещение никогда не используется для выполнения обработки, так как скорость движения исполнительного органа станка очень высока. Код G00 отменяется кодами: G01, G02, G03.

G01 - линейная интерполяция.

Функция G01 используется для выполнения прямолинейных перемещений с заданной скоростью (F). При программировании задаются координаты конечной точки в абсолютных значениях (G90) или приращениях (G91) с соответственными адресами перемещений (например X, Y, Z). Код G01 отменяется кодами: G00, G02, G03.

G02 - круговая интерполяция по часовой стрелке.

Функция GO2 предназначена для выполнения перемещения инструмента по дуге (окружности) в направлении часовой стрелки с заданной скоростью (F). При программировании задаются координаты конечной точки в абсолютных значениях (G90) или приращениях (G91) с соответственными адресами перемещений (например X, Y, Z).

Код G02 отменяется кодами: G00, G01, G03.

G03 - круговая интерполяция против часовой стрелки.

Функция GO3 предназначена для выполнения перемещения инструмента по дуге (окружности) в направлении против часовой стрелки с заданной скоростью (F). При программировании задаются координаты конечной точки в абсолютных значениях (G90) или приращениях (G91) с соответственными адресами перемещений (например X, Y, Z).

Параметры интерполяции I, J, K, которые определяют координаты центра дуги окружности в выбранной плоскости, программируются в приращениях от начальной точки к центру окружности, в направлениях, параллельных осям X, Y, Z соответственно.

Код G03 отменяется кодами: G00, G01, G02.

G04 - пауза.

Функция G04 - команда на выполнение выдержки с заданным временем. Этот код программируется вместе с X или Р адресом, который указывает длительность времени выдержки. Обычно, это время составляет от 0.001 до 99999.999 секунд. Например G04 X2.5 - пауза 2.5 секунды, G04 Р1000 - пауза 1 секунда.

G17 - выбор плоскости XY.

Код G17 предназначен для выбора плоскости XY в качестве рабочей. Плоскость XY становится определяющей при использовании круговой интерполяции, вращении системы координат и постоянных циклов сверления.

G18 - выбор плоскости XZ.

Код G18 предназначен для выбора плоскости XZ в качестве рабочей. Плоскость XZ становится определяющей при использовании круговой интерполяции, вращении системы координат и постоянных циклов сверления.

G19 - выбор плоскости YZ.

Код G19 предназначен для выбора плоскости YZ в качестве рабочей. Плоскость YZ становится определяющей при использовании круговой интерполяции, вращении системы координат и постоянных циклов сверления.

G20 - ввод дюймовых данных.

Функция G20 активизирует режим работы с дюймовыми данными.

G21 - ввод метрических данных.

Функция G21 активизирует режим работы с метрическими данными.

G40 - отмена коррекции на радиус инструмента.

Функция G40 отменяет действие автоматической коррекции на радиус инструмента G41 и G42.

G41 - левая коррекция на радиус инструмента.

Функция G41 применяется для включения автоматической коррекции на радиус инструмента находящегося слева от обрабатываемой поверхности (если смотреть от инструмента в направлении его движения относительно заготовки). Программируется вместе с функцией инструмента (D).

G42 - правая коррекция на радиус инструмента.

Функция G42 применяется для включения автоматической коррекции на радиус инструмента находящегося справа от обрабатываемой поверхности (если смотреть от инструмента в направлении его движения относительно заготовки). Программируется вместе с функцией инструмента (D).

G43 - коррекция на положение инструмента.

Функция G43 применяется для компенсации длинны инструмента. Программируется вместе с функцией инструмента (H).

G52 - локальная система координат.

СЧПУ позволяет устанавливать кроме стандартных рабочих систем координат (G54-G59) еще и локальные. Когда СЧПУ станка выполняет команду G52, то начало действующей рабочей системы координат смещается на значение указанное при помощи слов данных X, Y и Z. Код G52 автоматически отменяется с помощью команды G52 ХО YO Z0.

G54 - G59 - заданное смещение.

Смещение рабочей системы координат детали относительно системы координат станка.

G68 - вращение координат.

Код G68 позволяет выполнить поворот координатной системы на определенный угол. Для выполнения поворота требуется указать плоскость вращения, центр вращения и угол поворота. Плоскость вращения устанавливается при помощи кодов G17, G18 и G19. Центр вращения устанавливается относительно нулевой точки активной рабочей системы координат (G54 - G59). Угол вращения указывается при помощи R. Например: G17 G68 X0. Y0. R120.

G69 - отмена вращения координат.

Код G69 отменяет режим вращения координат G68.

G73 - высокоскоростной цикл прерывистого сверления.

Цикл G73 предназначен для сверления отверстий. Движение в процессе обработки происходит на рабочей подаче с периодическим выводом инструмента. Движение в исходное положение после обработки идет на ускоренной подаче.

G74 - цикл нарезания левой резьбы.

Цикл G74 предназначен для нарезания левой резьбы метчиком. Движение в процессе обработки происходит на рабочей подаче, шпиндель вращается в заданном направлении. Движение в исходное положение после обработки идет на рабочей подаче с обратным вращением шпинделя.

G80 - отмена постоянного цикла.

Функция, которая отменяет любой постоянный цикл.

G81 - стандартный цикл сверления.

Цикл G81 предназначен для зацентровки и сверления отверстий. Движение в процессе обработки происходит на рабочей подаче. Движение в исходное положение после обработки идет на ускоренной подаче.

G82 - сверление с выдержкой.

Цикл G82 предназначен для сверления и зенкования отверстий. Движение в процессе обработки происходит на рабочей подаче с паузой в конце. Движение в исходное положение после обработки идет на ускоренной подаче.

G83 - цикл прерывистого сверления.

Цикл G83 предназначен для глубокого сверления отверстий. Движение в процессе обработки происходит на рабочей подаче с периодическим выводом инструмента в плоскость отвода. Движение в исходное положение после обработки идет на ускоренной подаче.

G84 - цикл нарезания резьбы.

Цикл G84 предназначен для нарезания резьбы метчиком. Движение в процессе обработки происходит на рабочей подаче, шпиндель вращается в заданном направлении. Движение в исходное положение после обработки идет на рабочей подаче с обратным вращением шпинделя.

G85 - стандартный цикл растачивания.

Цикл G85 предназначен для развертывания и растачивания отверстий. Движение в процессе обработки происходит на рабочей подаче. Движение в исходное положение после обработки идет на рабочей подаче.

G86 - цикл растачивания с остановкой вращения шпинделя.

Цикл G86 предназначен для растачивания отверстий. Движение в процессе обработки происходит на рабочей подаче. В конце обработки происходит остановка шпинделя. Движение в исходное положение после обработки идет на ускоренной подаче.

G87 - цикл растачивания с отводом вручную.

Цикл G87 предназначен для растачивания отверстий. Движение в процессе обработки происходит на рабочей подаче. В конце обработки происходит остановка шпинделя. Движение в исходное положение после обработки идет вручную.

G90 - режим абсолютного позиционирования.

В режиме абсолютного позиционирования G90 перемещения исполнительных органов производятся относительно нулевой точки рабочей системы координат G54-G59 (программируется, куда должен двигаться инструмент). Код G90 отменяется при помощи кода относительного позиционирования G91.

G91 - режим относительного позиционирования.

В режиме относительного (инкрементального) позиционирования G91 за нулевое положение каждый раз принимается положение исполнительного органа, которое он занимал перед началом перемещения к следующей опорной точке (программируется, на сколько должен переместиться инструмент). Код G91 отменяется при помощи кода абсолютного позиционирования G90.

G94 - скорость подачи в дюймах/миллиметрах в минуту.

При помощи функции G94 указанная скорость подачи устанавливается в дюймах за 1 минуту (если действует функция G20) или в миллиметрах за 1 минуту (если действует функция G21). Программируется вместе с функцией подачи (F). Код G94 отменяется кодом G95.

G95 - скорость подачи в дюймах/миллиметрах на оборот.

При помощи функции G95 указанная скорость подачи устанавливается в дюймах на 1 оборот шпинделя (если действует функция G20) или в миллиметрах на 1 оборот шпинделя (если действует функция G21). Т.е. скорость подачи F синхронизируется со скоростью вращения шпинделя S. Код G95 отменяется кодом G94.

G98 - возврат к исходной плоскости в цикле.

Если постоянный цикл станка работает совместно с функцией G98, то инструмент возвращается к исходной плоскости в конце каждого цикла и между всеми обрабатываемыми отверстиями. Функция G98 отменяется при помощи G99.

G99 - возврат к плоскости отвода в цикле.

Если постоянный цикл станка работает совместно с функцией G99, то инструмент возвращается к плоскости отвода между всеми обрабатываемыми отверстиями. Функция G99 отменяется при помощи G98.

G-код (УП) можно создать вручную или автоматизировано в таких программах, например, как ArtCam .

На исполнение G-код запускается в программах управления станком Mach3 и KCam .

Информация о порядке обработки изделия на станке вводится по кадрам. КАДР - это часть управляющей программы, вводимая и обрабатываемая как единое целое и содержащая не менее одной команды.

В каждом кадре записывается только та часть программы, которая изменяется по отношению к предыдущему кадру.

Кадр состоит из слов, определяющих назначение следующих за ними данных.

Например:

N3 - порядковый номер кадра

G02 - подготовительная функция

(G01 - перемещение по прямой к точке

G02,G03 - круговая интерполяция по часовой или против)

X - Координаты конеченой точки перемещения по осям, Y - (например, X+037540 (375,4мм)

Координаты центра дуги при круговой интерполяции

F4 - код подачи (например, F0060 (60мм/мин)) S2 - код частоты вращения шпинделя T2 - номер инструмента

M2 - вспомогательная функция (смена инструмента, смена стола, включение охлаждения, зажим заготовки...).

L3 -ввод и отмена коррекции геометрической информации.

LF - конец кадра.

Чтобы составить программу перемещения рабочих органов станка надо связать с ним определенную систему координат. Ось Z выбирается параллельно оси главного шпинделя станка, ось X всегда горизонтальна. При составлении программы пользуются понятием нулевой, исходной и фиксированной точки.

Подготовка управляющей программы включает:

1.Анализ чертежа детали и выбор заготовки.

    Выбор станка по его технологическим возможностям (размеры, возможности интерполяции, количество инструментов и т.д.).

    Разработка технологического процесса изготовления детали, выбор режущего инструмента и режимов резания.

4.Выбор системы координат детали и исходной точки для инструмента.

5.Выбор способа крепления заготовки на станке.

    Простановка опорных точек, построение и расчет перемещения инструмента.

    Кодирование информации

    Запись программы на программоноситель, ее редактирование и отладка.

Применение станков с ЧПУ значительно обострило проблему использования человека в производственных условиях. Выполнение всех

действий по изготовлению детали станком в автоматическом режиме оставило человеку наиболее тяжелую и не творческую работу по установке и снятию заготовок. Поэтому, одновременно с развитием станочных систем с ЧПУ, велись работы по созданию систем способных заменить человека при выполнении специфических действий, требующих применения "РУЧНОГО" труда.

Фрезерный станок и многооперационный станок (обрабатывающий центр) с числовым программным управлением

3.3 Промышленные роботы

Промышленный робот (ПР) это механический манипулятор с программным управлением.

Манипулятор - механическое устройство, имитирующее или заменяющее действия человеческих рук на обьект производства.

Промышленные роботы подразделяются на технологические (изме-

няющие свойства обьекта) и транспортные.

Технологический робот производит сварку, транспортный робот перемещает заготовки в зону обработки.

По грузоподьемности подразделяются на:

Масса обьекта сверхлегкие до 1 кг легкие 1 - 10 кг средние 10 -100 кг тяжелые 100- 1000 кг сверхтяжелые более 1000 кг

Сверхлегкие роботы собирают прибор, тяжелый робот перемещает крупногабаритные заготовки.

ПР подразделяются также по количеству степеней свободы рабочего органа, по системе ЧПУ (замкнутая и незамкнутая, контурная и позиционная, CNC, DNC, HNC).

Зона обслуживания транспортного робота и траектория перемещения заготовки

В настоящее время широкое распространение получили транспортные роботы, осуществляющие загрузку технологического оборудование, доставку заготовок со склада и транспортировку деталей на склад. При производстве штамповочных операций транспортные роботы осуществляют подачу заготовок на штамп и снятие их.

Широкое применение получили роботы производящие сварку кузовов автомобилей, их окраску. Роботы применяются при сборке радиоэлектронной аппаратуры, часов и др. приборов.

В совокупности с технологическим оборудованием с системами ЧПУ промышленные роботы образуют базу для комплексной автоматизации производства.

Роботы сваривают кузова легковых автомобилей и устанавливают деревянные панели на станок для обработки (примеры применения роботов)

Контрольные вопросы:

1.Какие системы ЧПУ позволяют обрабатывать сферические поверхности на токарных станках?

2.Какие системы ЧПУ целесообразно применять на сверлильных станках?

3.По скольки координатам возможна интерполяция при обработке заготовок на токарных станках? - на фрезерных станках?

4.Чем отличаются системы циклового программного управления от систем ЧПУ?

5.Какие функции выполняют промышленные роботы?

Образец вопросов карты тестового контроля.

    На каких операциях целесообразно применение систем ЧПУ с контурным управлением?

А). При точении ступенчатых валиков.

Б) . При фрезеровании поверхностей двойной кривизны.

В). При обработке отверстий в печатных платах.

    Какие виды роботов применяются при окраске сложнопрофильных деталей? А). Технологические с контурным управлением.

Б). Крупногабаритные с позиционным управлением.

В). Транспортные с контурным управлением.

Компания Metal Working Group оказывает профессиональные конструкторские услуги в сфере машиностроения.

Нами выполняется разработка управляющих программ для станков с ЧПУ и их подготовка, при помощи СAM приложений для ЧПУ Siemens Sinumerik , Fanuc , Mazatro l, Fagor .

Только у нас имеется лицензионное программное обеспечение для написания программ для станков с ЧПУ Mazak - MAZATROL Matrix CAM .

Для других систем ЧПУ написание программ для станков с ЧПУ и подготовка ведется в программах SprutCAM , Cimco , CAMWorks .

У нас имеется большая база постпроцессоров практически для всех видов станков с ЧПУ.

Так же возможно написание в ручную (G-, M- коды ) разрабатываемых управляющих программ для станков с ЧПУ.

Выполняем написание управляющих программ для стоек ЧПУ LJUMO (Люмо) и К524 .

Разрабатываем необходимую техническую документацию.

В комплексе предлагаем разработку 3D модели для станков ЧПУ по весьма демократичным ценам

Имеется богатый опыт создания 3d моделей для станков ЧПУ. Глубокое знание всего технологического процесса даёт нашим специалистам конкурентное преимущество. Мы создаём готовые 3d модели для станков ЧПУ высокого качества с учётом всех пожеланий заказчика.

Cоздаём универсальные 3D модели для станков с ЧПУ. Это значит, что наши 3D модели для станков ЧПУ могут быть использованы в любой программе, предназначенной для обработки по этой технологии.

Обратившись в нашу компанию, вы получите:

  • оперативность и своевременность разработки модели;
  • доступные цены,
  • сжатые сроки выполнения проектов
  • высокое качество выполняемой работы.

В сфере разработки управляющих программ и 3D моделей для станков с ЧПУ мы работаем с заказами повышенной сложности. Сотрудничаем заказчиками разного уровня: малым и среднем бизнесом, крупными предприятиями и частными клиентами.

У нас вы найдете доступные цены, сжатые сроки выполнения проектов и качество выполняемой работы.

Оценка стоимости Вашего заказа нашими специалистами проводится БЕСПЛАТНО .
Время оценки стоимости заказа занимает менее
2 часов .

С полным списком наших услуг, можете ознакомиться в разделе Наши услуги

Если у вас возникли вопросы, будем рады вам ответить.

О станках ЧПУ

Современные станки ЧПУ отличаются высокой эффективностью управления, которая достигается за счёт системы числового программного управления. Все операции производятся на основе параметров, которые задаёт оператор станка. Такая система не требует присутствия большого количества персонала, что делает процесс управления станком ЧПУ выгодным и доступным для широкого круга пользователей.

Современные станки ЧПУ оборудованы системами самонастройки. В ходе работы над первой деталью система проводит оптимизацию настроек, с учётом которых идёт дальнейшая работа. После получения оптимальных параметров работы идёт обработка всей партии. Такая технология может быть применена в различных технологиях обработки.

Основным преимуществами работы станков ЧПУ являются:

  • Оптимизация трудозатрат (значительное уменьшение количество работников);
  • Оптимизация затрат на оборудование и организацию рабочих площадей (один станок ЧПУ заменяет несколько обычных);
  • Увеличение производительности и коэффициентов эффективности рабочего времени;
  • Сокращение сроков производства (на 50%);
  • Увеличения показателей точности производимых работ (на 30-50 %).
Программы для ЧПУ фрезера