Рамочная антенна на кв диапазон. Приемные антенны кв диапазона. Девятидиапазонная КВ антенна

Представленная в антенна относится к типу так называемых приемных активных рамочных антенн. Рамка этой антенны позволяет принимать не менее 4-х ВЧ коротковолновых радиолюбительских диапазонов. Выходное сопротивление антенного устройства рассчитано на подключение кабеля с волновым сопротивление 75 Ом. Для уменьшения влияния массивных металлических предметов устройство следует устанавливать подальше от них.

Рис.1

Расстояние между концами рамки составляет 10 мм. Сама рамка подключаются к схеме устройства через разъем и закреплена на фотоштативе.
Для настройки в резонанс в устройстве применен 2-х секционный переменный конденсатор. На различных КВ диапазонах к нему подключаются дополнительные емкости: 14 - 30 мГц - S1 и S2 разомкнуты; 7 мГц - S1 разомкнут, S2 замкнут; 3,5 мГц - S1 замкнут, S2 разомкнут. Дроссели L1,L2 выполнены на кольцах и содержат 25 витков провода диаметром 0,2. ВЧ-трансформатор содержит 3х10 витков такого же провода.

Активная рамочная антенна потребляет ток около 8 мА при напряжении источника питания 9 В. В ней применены транзисторы VT1,VT2 типа КП302 А, Б, они заменимы на КП303 Д, Г. VT3 - КТ306 (316, 325).
Elektronisches Jarbuch 1990 (свободный перевод RA0CCN) .

К сожалению в описании приведенной конструкции , взятой с сайта «Радиомания - сайт радиолюбителей», не приводится конструкция самой рамки и некоторые другие сведения. Но в интернете и радиолюбительских СМИ наиболее часто встречаются такие конструкции рамок (рис.2 - 4):


Рис.2 . Квадрат со стороной 1 м из медной трубки d=25мм,
связь с TRX через петлю связи из 50-омного кабеля (не показана).

Рис.3 . Конструкция DF9IV . Кольцо Д=400 мм из медной трубки д=12 мм, внутри которого провод в изоляции сечением 8 мм кв. Cвязь с TRX через петлю связи.
Эта конструкция повторена В.Брагиным (UA9KEE) , только вместо трубки применен коаксиальный кабель РК-75-17-31 d=25,1 мм и внутренним проводником d=4 мм.

Рис.4 . Конструкция RV1AU , кольцо D=420 мм из кабеля d=18 мм. Cвязь с TRX через петлю связи.

Любая из приведенных конструкций рамки (без петли связи, естественно) может работать в описанной выше схеме активной КВ антенны. С учетом дифференциального входа усилителя требуется лишь сделать отвод от середины рамки и соединить его с общим проводом усилителя.
Данные такой конструкции рамки-кольца приведены в материале (Joachim Swender, Aktive Schlifanenne fur Empfang. - Funkamauter, 1999, № 7, S. 787 - 789) , опубликованного в .
Таким образом, для схемы, показанной на рис.1, номинал индуктивности дросселей L1, L2 - около 100 мкГ. Кольцо трансформатора 13х7,9х6,4 мм с начальной магнитной проницаемостью 800.
Поскольку принцип построения схемы в указанной публикации тот же, что и в приведенной в начале обзора, приведу кратко текст статьи «Активная КВ антенна» из .


Рис.5
Антенна работает в полосе частот от 6 до 30 мГц. Выходное сопротивление антенны 50 Ом. Она представляет собой рамку (см. рис.5), которая настраивается на рабочую частоту конденсатором переменной емкости. К рамке подключен усилитель с дифференциальным входом, выполненный по каскодной схеме. Применение полевых транзисторов на входе обеспечивает высокое входное сопротивление и малую входную емкость усилителя, что позволяет полностью подключить рамку к усилителю с высоким коэффициентом передачи устройства в целом, а также дает возможность без переключений перекрыть большую полосу частот. В усилителе использованы высокочастотные полевые транзисторы и биполярные СВЧ транзисторы с граничной частотой около 5 гГц.

Качественно выполненный выходной трансформатор Т1 позволяет получить полосу частот усилителя 1 ... 100 мГц. Усилитель имеет коэффициент передачи около 1 при работе на нагрузку 50 Ом. Для повышения входного сопротивления усилителя на высокочастотном крае полосы рабочих частот антенны в цепи стоков полевых транзисторов VT1 и VТ3 включен дроссель L1.
Напряжение питания на базах биполярных транзисторов (около 4 В) стабилизировано цепочкой диодов VD1 - VD6. Заменить их стабилитронами нельзя, так как высокочастотный шум, генерируемый ими в режиме стабилизации, может свести на нет все достоинства усилителя.
Усилитель можно питать от малогабаритной батареи напряжением 9 В ("Крона"). Потребляемый ток не более 3 мА.

Обмотки трансформатора Т1 содержат: I - 3 витка, II и III - по 20 витков литцендрата.
Переменный конденсатор С1 от радиовещательного приемника размещен в разрезе рамки в виде кольца из медной трубки D=1 м. Диаметр трубки d=16 мм. К рамке подключают только выводы от статоров, что минимизирует влияние руки при настройке антенны на рабочую частоту. Перекрытие у антенны по частоте большое, поэтому переменный конденсатор надо снабдить хорошим верньерным устройством и хотя бы простой шкалой.

Рамка закреплена вертикально на деревянном основании, на котором установлены конденсатор С1 и остальные элементы усилителя. Точно от середины рамки вдоль поддерживающей деревянной стойки идет провод отвода от рамки к усилителю.

Высокая добротность рамки (на частоте 6 мГц - около 1000) обеспечивает высокий коэффициент передачи устройства в целом и хорошую избирательность. Кроме того, от мешающих станций можно отстроиться, используя пространственную селекцию с помощью оптимальной ориентации рамки антенны.

Надеюсь, что поданные в такой редакции материалы и ссылки подвигнут радиолюбителей на повторение или создание новых конструкций активных антенн.

Источники:
1. Активная КВ антенна. Радио, 2000, № 5.
2. Рамочная КВ антенна. Радиомания - сайт радиолюбителей, раздел «Антенны».
3. Г.Беликов. Антенна конструкции RV1AU. http://www.qsl.net/rv1au
4. Малогабаритная КВ антенна. Радио, 1989, № 7, с.90.
5. В.Брагин. Антенна из коаксиального кабеля. Радио, 1990, № 2, c.38.

Малогабаритные многовитковые рамочные антенны обычно используются как приемные. Гарри Лителл SMOVPO представил вариант такой антенны пригодной не только для приема, но и для передачи на диапазонах 80 и 160 метров.

Конструкция антенны показана на рисунке выше. Многовитковое полотно рамки изготовлено из 20 метров литцендрата диаметром 2 мм. К концам этой рамки подсоединен КПЕ 3…30 пФ, которым можно настраивать антенну в резонанс в диапазоне от 3,5 до 3,8 МГц. Ось КПЕ желательно снабдить верньером, т.к. рабочая полоса частот антенны всего 10 кГц.

Согласование антенны с 50-омным фидером выполняется с помощью петли связи в виде прямоугольного треугольника с катетами по 800 мм, выполненной из того же литцендрата, что и антенное полотно.

С таким согласователем автор добился КСВ на резонансной частоте не более 1,6. Петля связи соединяется с фидером с помощью кабельного соединителя (см. самый верхний рисунок). Полотно антенны и петля связи размещены на крестовидных распорках из дерева (можно использовать бамбук, ПВХ трубы и т.д.). Для работы на 160-метровом диапазоне параллельно КПЕ подпаивают высоковольтный конденсатор на 410 пФ (например, параллельно соединив 360 и 51 пФ).

Автор отмечает, что данная рамочная антенна не является высокоэффективной DX-антенной, но ее хорошо использовать как вторую антенну на маленьком балконе, на полевых днях или в отпуске, т.к. она легко собирается и в транспортном виде занимает мало места. Являясь магнитной антенной, она может использоваться как хорошая приемная антенна на нижних КВ-диапазонах, особенно в городских условиях, богатых электрическими помехами, а как передающая — она все же является компромиссом.

Холахуп — антенна (в переводе с английского — обруч, кольцо) предназначена для приема слабых сигналов любительских радиостанций в условиях эфирной обстановки индустриального города на 160 метровом KB диапазоне.

Как известно, простые антенны типа GP, Sloper, LVV, всевозможные рамки и прочие антенны хорошо работают на передачу, но плохо работают на прием, так как в условиях большого города воспринимают всевозможные индустриальные помехи, что, в итоге выражается в большой зашумленности эфира (диапазона).

В таких условиях на низкочастотных диапазонах очень трудно реализовать предельную чувствительность своего приемника или трансивера (обычно 0,5…1,0 мкВ). Реальная чувствительность трансивера на диапазоне 1,8 /МГц в условиях большого города ограничивается 10… 15 мкВ. Для отстройки от помех приходиться включать аттенюаторы, применять направленные антенны, специальные фильтры и т.п. Аналогичная картина, хотя и в меньшей степени, наблюдается и на остальных KB диапазонах. На более высокочастотных диапазонах 14 — 28 МГц помех меньше, но они все равно присутствуют и ухудшают условия приема. В сельской местности (вдали от цивилизации) индустриальных помех почти нет, поэтому возможность реализации максимальной чувствительности своего трансивера больше. При этом не происходит модуляции одной принимаемой радиостанции другой и, используя качественный приемник, на одной частотe можно одновременно слушать две-три станции различая их по тембру звучания.

В целях реализации максимально возможной чувствительности радиоприемного устройства на диапазоне 1,8 МГц предлагаю простую кольцевую антенну (хулахуп), работающую только на прием . Указанная антенна отличается повышенной помехозащищенностью, так как не воспринимает магнитную составляющую электромагнитного поля помехи H, уменьшая на эту величину суммарные помехи на входе трансивера.

Наличие ярко выраженного максимума в диаграмме направленности антенны позволяет в ряде случаев даже ослабить помехи. Кроме того, вращая антенну в различных плоскостях можно дополнительно отстроиться от помехи, идущей с определенного направления.

Изменяя положение антенны в горизонтальной и вертикальной плоскости, можно улучшить качество приема и в том случае, когда сигнал и помеха приходят с одного направления, но под разными углами к горизонту. Более того, благодаря настройки антенны в резонанс повышается избирательность приемника, по зеркальным и другим побочным каналам.

Конструкция антенны довольно простая. Для ее изготовления необходим отрезок коаксиального кабеля (РК-75, РК-50) длиной; 4,0 м и диаметром 7-10 мм, у которого, по середине вырезается внешняя виниловая оболочка и медная оплетка («чулок») на расстоянии 10 мм, рис.1.

После чего, указанный отрезок кабеля сматывается в бухту из 4-х витков. Между витками кабеля прокладывается петля связи (незамкнутое кольцо) из любого тонкого монтажного провода.

В результате получается компактное кольцо (хулахул) диаметром около 32 см, которое для фиксации в нескольких местах обматывают изолентой или скотчем, рис. 2.

К двум концам центральной жилы коаксиального кабеля подключается переменный конденсатор С1 обязательно с воздушным диэлектриком (для повышения добротности) и емкостью около 1000 пф. Подойдет 2-х секционный конденсатор от старых радиовещательных приемников 2х495 пф, обе секции которого включены параллельно.

Вход трансивера или радиоприемника подключается к одному концу витка связи, другой конец витка соединяется с корпусом (общим провод или клемма «земля»), рис. 2.

Для сужения полосы пропускания антенны, и, следовательно, лучшей отстройки от помех последовательно с петлёй связи можно включить конденсатор небольшой емкости С2, от величины которого будет зависит добротность всей антенной системы и полоса пропускания.

Как показали эксперименты без конденсатора С2, полоса перекрываемых частот составляет от 1830 до 1870 кГц. При подключении конденсатора С2 = 20пФ полоса пропускания антенны сужается до: 5-10 кГц в центе DX участка 160 метрового любительского диапазона.

Переменным конденсатором С1 вся антенная система настраивается в резонанс, по максимальной громкости принимаемого сигнала. При этом резонанс отчетливо воспринимается на слух. Диаграмма направленности антенны имеет вид восьмерки с ярко выраженным минимумом и максимумом, рис. 3.

Если чувствительности трансивера недостаточно, то на его входе можно добавить усилитель высокой частоты (УВЧ) с коэффициентом усиления К = 20-30 dB. Однако, не следует увлекаться большим усилением УВЧ, так как в этом случае снижается верхняя граница динамического диапазона приемника.

Электрические схемы УВЧ Неоднократно публиковались в радиолюбительской литературе, например, рис.5 и 6. Здесь трансформатор Т1 наматывается на ферритовом кольце 1000 НМ, диаметром 7-10 мм, скрученным вдвое проводом ПЭВ 0,2 мм. Конец одного провода соединяется с началом другого, образуя среднюю точку. Лучшим из транзисторов, работающих в УВЧ является КТ93ЭА (вместо КТ606А), он наиболее линеен из ранее выпускавшихся. Детали, обозначенные звездочкой, влияют на коэффициент усиления УВЧ и подбираются при настройке. В остальном схема особенностей не имеет. При работе с указанной антенной ее можно вращать в пространстве в различных плоскостях, ориентируясь по наиболее уверенному приему DX станции.

С целью исключения экранирования антенны железобетонными перекрытиями антенну нужно вынести хотя бы на подоконник на балкон, конструкция антенны может быть любой, например, такой как приведено на рис 4.

Холахуп устанавливается сверху металлической коробки (дюраль или двухсторонний стеклотекстолит), в которой размещается конденсатор переменной емкости. Ручка настройки выводится на переднюю панель, коаксиальный разъем для подключения приёмника на заднюю панель. Если будет применяться УВЧ, то необходимо предусмотреть выводы для его питания.

Изменив размеры коаксиального кабеля, антенну можно перестроить и на другие любительские или вещательные диапазоны.

Заключение
Раньше в зимнее время на диапазоне 1,8 МГц, особенно, на восходе и заходе солнца получалось так, что я (US0IZ), работая на CQ (общий вызов) не слышал многих корреспондентов: К, W, PY, VK, J А и других, которые меня вызывали. Теперь же получается наоборот - я слышу даже намного больше, чем мне отвечают. Следовательно, предстоит «новый виток спирали» — совершенствование своего передатчика ТХ и передающих антенн.

Творческий процесс продолжается… и так до бесконечности. Такова уж доля радиолюбителя-коротковолновика.

Париж?! Брал!

Вашингтон?! Брал!

А после того как ты там полазил, приёмник перестал принимать отдалённые радиостанции, - говорил мне отец ещё в детстве.

С тех пор прошло несколько десятков лет, а приемник, как ни в чём не бывало, продолжает брать города. Честно скажу, что с приёмником я ничего не делал. Эти советские ламповые агрегаты будут работать и после апокалипсиса. Просто всё дело в антенне.


Поздним вечером, в отблесках пламени камина, не включая электричества, жму клавишу старого лампового радиоприёмника, светящаяся шкала с городами уютно насытила полумрак комнаты, вращая верньер, настраиваюсь на радиостанции.
Длинноволновый диапазон безмолвствует. Правда, ровно в прямоугольнике шкалы светящегося окошка города Варшава на частоте около 1300 метров была взята радиостанция «Польское Радио», а это составляет дальность по прямой более 1150 км.
Средние волны берут местные и отдалённые радиостанции. А здесь взята дальность более 2000 км.
Вот уже почти 2 года в Москве и области на этих волнах (ДВ, СВ) прекратили работу центральные радиовещательные каналы .

Особенно живы короткие волны, здесь полный аншлаг. На коротких волнах радиоволны способны обойти вокруг Земли и радиостанции реально принимать из любой точки земного шара, но условия распространения радиоволн здесь зависят от времени и состояния ионосферы, от которой они способны отражаться.
Включаю настольную лампу и на всех диапазонах (кроме УКВ) вместо радиостанций сплошной шум, переходящий в рокот. Теперь настольная лампа, включая сетевые провода – передатчик помех, который мешает нормальному радиоприёму. Модные, в настоящее время, энергосберегающие лампы и другие бытовые приборы (телевизоры, компьютеры) превратили сетевые провода в антенны передатчиков помех. Стоило только сетевой провод от лампы отодвинуть на пару метров от провода снижения антенны, как приём радиостанций возобновился.

Проблема помехоустойчивости была и в прошлом веке, и в диапазоне метровых волн её решали различными конструкциями антенн, которые так и назывались как «антишумовые».

Антишумовые антенны.

Описание антишумовых антенн я впервые прочитал в журнале «Радиофронт» за 1938 год (23, 24).

Рис. 2.
Рис. 3.

Аналогичное описание конструкции антишумовой антенны в журнале «Радиофронт» за 1939 год (06). Но здесь хорошие результаты получились в диапазоне длинных волн. Величина ослабления помех составила 60 дБ. Данная статья может представлять интерес для любительской радиосвязи на ДВ (136 кГц).

Правда, в настоящее время лучшие результаты получаются при использовании согласующего усилителя непосредственно в антенне, который по коаксиальному кабелю подключён к согласующему усилителю на входе самого приёмника.

Антенна метёлка.

Это была моя первая самодельная антенна, которую я делал для детекторного приёмника. Первая антенна, об которую я обжёгся, залуживая каждый проводок, строго по чертежу с помощью транспортира выставляя углы наклона прутиков. Как я не старался, но детекторный приёмник с ней не работал. Поставь я тогда вместо метелки крышку от кастрюльки, эффект был бы аналогичный. Тогда, в детстве, спасла приёмник сетевая проводка, один провод которой через разделительный конденсатор был подсоединён к входу детектора. Вот тогда я понял, что для нормальной работы приёмника длина антенного провода должна быть хотя бы 20 метров, а всякие там электронные облачка, проводящие слои воздуха над метёлкой пусть останутся в теории. Старожилы будут ещё вспоминать, что метёлка, прикреплённая к печной трубе, исключительно хорошо ловила, когда дым шёл вертикально вверх. В деревнях обычно топили печь к вечеру и в чугунках готовили ужин. К вечеру, как правило, стихает ветер, и идёт столбом дым. В тоже время к вечеру происходит преломление волн от ионизированного слоя поверхности земли и приём в этих диапазонах волн улучшается.
Лучшие результаты можно получить с представленными ниже картинками антенн (рис 5 - 6). Это тоже антенны с сосредоточенной ёмкостью. Здесь проволочная рамка и спираль включает в себя 15 - 20 метров провода. Если крыша достаточно высокая и не из металла и свободно пропускает радиоволны, то такие композиции (рис. 5, 6) можно разместить на чердаке.

Рис. 5. "Радио всем" 1929 № 11
Рис. 6. "Радио всем" 1929 № 11













Рулеточная антенна.




Я использовал обычную строительную рулетку с длиной стального полотна 5 метров. Такая рулетка очень удобна в качестве антенны КВ диапазона, так как имеет металлическую клипсу, электрически связанную через вал с полотном ленты. Карманные приёмники с диапазоном КВ имеют чисто символическую штыревую антенну, в противном случае они бы не поместились в карман. Стоило мне только закрепить рулетку на штыревой антенне приёмника, как коротковолновые диапазоны в районе 13 метров стали захлёбываться от большого количества принимаемых радиостанций.

Приём на осветительную сеть.

Так называется статья в Журнале "Радиолюбитель" за 1924 год № 03. Теперь эти антенны вошли в историю, но при необходимости сетевыми проводами ещё можно воспользоваться в какой-нибудь затерянной деревушке, предварительно отключив все современные бытовые приборы.

Самодельная Г – образная антенна.


Эти антенны представлены на рисунке 4. а, б). Горизонтальная часть антенны не должна превышать 20 метров, обычно рекомендуют 8 – 12 метров. Расстояние от земли не менее 10 метров. Дальнейшее увеличение высоты подвеса антенны приводит к росту атмосферных помех.


Эту антенну я сделал из сетевой переноски на бобине. Такую антенну (рис. 8) очень легко развернуть в полевых условиях. Кстати детекторный приёмник с ней неплохо работал. На рисунке, где изображён детекторный приёмник, из одной сетевой бобины (2) сделан колебательный контур, а второй сетевой удлинитель (1) используется в качестве Г- образной антенны.

Рамочные антенны.

Антенна может быть выполнена в виде рамки, и является входным перестраиваемым колебательным контуром, который обладает направленными свойствами, что значительно ослабляет помехи радиоприёму.

Магнитная антенна.

При её изготовлении используется ферритовый цилиндрический стержень, а также прямоугольный стержень, занимающий меньше места в карманном радиоприёмнике. На стержне помещается входной перестраиваемый контур. Достоинством магнитных антенн - маленькие габариты, а высокая добротность контура, и, как следствие высокая селективность (отстройка от соседних станций), которая в совокупности с направленным свойством антенны только добавят ещё одно преимущество, такое, как лучшая помехоустойчивость приёма в городе. Применение магнитных антенн в большей степени предназначено для приёма местных радиовещательных станций, однако высокая чувствительность современных приёмников ДВ, СВ и КВ диапазонов и перечисленные выше положительные свойства антенны обеспечивают неплохую дальность радиоприёма.

Так, например, я смог на магнитную антенну поймать отдалённую радиостанцию, но стоило только подключить дополнительно громоздкую внешнюю антенну, как станция затерялась в шуме атмосферных помех.

Магнитная антенна в стационарном приёмнике имеет поворотное устройство.

На плоском ферритовом (аналогичным по длине цилиндрическом) стержне размером 3 Х 20 Х 115 мм марки 400НН для ДВ и СВ диапазонов на подвижном бумажном каркасе наматываются катушки проводом марки ПЭЛШО, ПЭЛ 0,1 – 0,14 , по 190 и 65 витков.

Для КВ диапазона контурная катушка размещается на диэлектрическом каркасе толщиной 1,5 - 2 мм и содержит 6 витков, намотанных с шагом (с расстоянием между витками) с длиной контура 10 мм. Диаметр провода 0,3 - 0,4 мм. Каркас с витками крепится на самом конце стержня.

Чердачные антенны.

Давно использую чердак для телевизионных и радиоприёмных антенн. Здесь, в дали от электропроводки, хорошо работает и антенна СВ и КВ диапазонов. Крыша из мягкой кровли, ондулина, шифера является прозрачной для радиоволн. В журнале «Радио всем» за 1927 (04) год даётся описание таких антенн. Автор С. Н. Бронштейн статьи «Чердачные антенны» рекомендует: «Форма может быть самой разнообразной, в зависимости от размеров помещения. Общая длина проводки должна быть не менее 40 – 50 метров. Материалом служит антенный канатик или звонковая проволока, укрепляемые на изоляторах. Грозовой переключатель при такой антенне отпадает».

Я использовал провод как одножильный, так и многожильный от электропроводки, не снимая с него изоляцию.

Потолочная антенна.

Это та самая антенна, на которую отцовский приёмник брал города. Медный моточный провод диаметром 0,5 – 0,7 мм наматывался на карандаш, а затем растягивался под потолком комнаты. Был кирпичный дом и высокий этаж, и приёмник работал превосходно, а когда переехали в дом из железобетона, то арматурная сетка дома стала преградой для радиоволн, и радио перестало нормально работать.

Из истории антенн.

Возвращаясь в прошлое, мне интересно было узнать, как выглядела первая в мире антенна.


Первая антенна была предложена А. С. Поповым в 1895 году, представляла собой длинный тонкий провод, приподнятый с помощью воздушных шаров. Она была присоединена к грозоотметчику (приемнику, регистрирующему грозовые разряды), прототипу радиотелеграфа. А во время первой в мире радиопередачи 1896 года на заседании Русского физико-химического общества в физическом кабинете Петербургского университета от первого радиотелеграфного радиоприёмника, к вертикальной антенне был протянут тонкий провод (журнал «Радио» 1946 г. 04 05 «Первая антенна»).

Рис. 13. Первая антенна.

Антенны. антенны 2 антенны 3 антенны 4

Антенна LW

Считаю необходимым опубликовать описание антенны LW-82 м (в просторечии - веревка). Дело в том, что эта антенна, при минимальных затратах – отсутствии фидера, отсутствии необходимости выхода на крышу (достаточно жить на 2 этаже и иметь точку подвеса на расстоянии более 80 м от Вашего дома) имеет очень неплохие параметры и позволяет начать работать на интереснейших диапазонах 160, 80, 40 м.

Описание подобной антенны есть также в книге «Антенны КВ-УКВ» авторов Беньковского, Липинского, рис. 5-20. Очень важное примечание: тюнер для этой антенны должен иметь хорошее радиотехническое заземление, а это только четвертьволновые противовесы на каждый диапазон, в худшем случае, система теплоснабжения Вашего дома. Схема простейшего тюнера для такой антенны представлена ниже:

Катушка L1 намотана на каркасе диаметром 40 мм проводом диаметром 1-1,25 мм и содержит 50 витков при длине намотки 70 мм. Катушка имеет отводы от 13-го витка (диапазон 40 м), считая справа и от 23-го витка, считая справа (диапазон 80 м); когда отводы не используются, вся катушка работает на диапазоне 160 м. Естественно, правее 13-го витка можно наделать отводов для диапазонов 20, 15, 10 м. Отводы указаны приблизительно по данным В.А. Суворова (UA4NM). У вашего тюнера, естественно, витки придется подбирать индивидуально по КСВ-метру включенному до тюнера или, в простейшем случае, по максимуму шума эфира на данном диапазоне или по неоновой лампочке на передачу.

Владимир Казаков

Эффективная балконная антенна на 145 мгц

Мне понадобилась универсальная антенна, с хорошими характеристиками для работы в разных условиях на 145МГц, например из дома, когда нет возможности установить антенну на крыше, из автомобиля, на стоянке и конечно в походе. Перебрав разные конструкции, я остановился на двух элементной направленной антенне. Несмотря на простоту (я бы даже сказал: банальность) конструкции, у нее много приемуществ, а простота изготовления, позволяет назвать ее "конструкцией выходного дня".


На фотографиях вы видите, как эта антенна установлена у меня на балконе. Конструкция получилась крепкой, дождь и сильный ветер ей не страшны. До этого, на балконе, у меня стояли несколько разных антенн: зигзаг без рефлектора, фирменные A-100 и A-200, но именно эта конструцию доказала свою эффективность, поэтому остальные антенны я убрал, за ненадобностью. При установке на крыше, 2 эл. на 145 МГц не прогрывают коллинеарной антенне 3x5/8, я проверял A-1000 длиной 5 метров. При тестировании, на расстоянии 50км, сигнал от A-1000 и 2х элементной антенны был одинаковым. Так и должно быть потому что, A-1000 имеет реальное усиление примерно 4дб, а описанная здесь 2х эл. антенна 4.8дб. Она всегда выигрывала у любых автомобильных антенн типа: 1/4, 1/2, 5/8, 6/8, 2x5/8. Если две такие антенны сфазировать вместе, они уверенно выигрывают у A-1000. Проверьте сами и убедитесь в этом.


Рассмотрим конструкцию, она очень простая (хотя возможно и не красива внешне, я ее сделал за 40 минут) и состоит из рефлектора длиной 1002 мм и разрезного вибратора длиной 972 мм (разрыв для кабеля 10 мм). Расстояние между рефлектором и активным элементом, примерно 204 - 210мм. Сами элементы выполнены из 4мм проволоки в изоляции. Если у вас провод будет другой, нужно скорректровать размеры. Места пайки, залепите сырой резиной, чтобы влага не попадала. КСВ от 144 до 146МГц, примерно 1.0 - 1.1, измерения проводились прибором SWR-121.

Входное сопротивление антенны 12.5 ом, для оптимального согласования с кабелем 50 ом, я использовал трансформатор сделанный из двух кусков пятидесятиомного кабеля. Они должны иметь одинаковую длину по 37 - 44см (при настройке подберите точнее) каждый. Оба куска кабеля, нужно прижать друг к другу по всей длине. Вот собственно и все. Рекомендую эту антенну всем, вместо штырей, зигзагов, фирменных коллинеарных антенн и прочей гадости, на которых пишут явно завышенное усиление! Если сравнивать ее с двумя квадратами, то при примерно равном усилении, на два квадрата вам понадобится 4 метра проволоки, а на эту антенну только два. Для двух квадратов, нужна будет более крепкая палка, потому что они будут заметно тяжелее. Разница в усилении составляет 0.3 дб, что совсем несущественно при реальных QSO, зато подавление по бокам и сзади у 2 ел. антенны значительно меньше и это тоже плюс, нам ведь нужна круговая диаграмма направленности.

Вариант с большим усилением

Многие спрашивают, как еще более поднять усиление описанной антенны и при этом сохранить широкий лепесток. Веть при добавлении элементов, будет не только расти усиление, но и сильно сужаться лепесток. Все очень просто, нужно сфазировать несколько однотипных антенн. На рисунке показано как это сделать. Проще всего сфазировать 2 или 4 антенны, разносить их нужно только по вертикали, потому что, горизонтальный разнос, также сузит главный лепесток. Поскольку описанная антенна обладает слабой направленностью, вы получите антенну с больщим усилением и практически круговой диаграммой. Еще один важный плюс соединения нескольких однотипных антенн, это улучшение качества приема мобильных станций, находящихся в движении. Да, да, на эту простую конструкцию мобильные станции будут приниматься значительно лучше чем на различные фирменные штыри длиной 5 - 7 метров (типа А-1000, 3x5/8 и др.). Также рекомендую ставить такие антенны в городах которые окружены со всех сторон горами. Теперь многочисленные "отраженки", возникающие в таких местах, будут работать на вас. В таких условиях 2 х 2 реально будет выигрывать у "солидных" многоэлементных антенн. Реальное усиление конструкции из двух антенн, примерно 7.3дб. Но учтите, что принимать она будет лучше чем одиночная антенна с реальным усилением 8-10дб. Четыре сфазированные антенны, будут иметь усиление 12.3 дб, при этом направленность будет практически круговой! Никакая одиночная антенна не сможет тягаться с ней!

Походный вариант

Через некоторое время, был сделан разборный вариант антенны, для походов и экспедиций. Испытания в полевых условиях, подтвердили хорошую её эффективность, она не уступает коллинеарным антеннам длиной 3 - 5 метров (2x5/8 или 3x5/8) при дальности до 50 км и выигрывает у них на дистанциях от 90 км и более. На фотографии, показан походный вариант антенны, в разобранном виде. Для сборки антенны, требуется 30 секунд. В качестве бума, используется водопроводная пластиковая труба, длиной 510 мм и диаметром 21 мм. Размеры элементов, были немного скорректированы, потому что использовалась другая проволока. Для такой маленькой антенны, всегда найдется место в вашем рюкзаке, да и на больших высотах, в горах, вам не придется прикладывать чрезмерные усилия для ее удержания (кто был на 4000 и выше, знает о чем я говорю). Весть кабель и трансформатор находятся внутри пластиковой трубы, это защищает их от случайных обрывов и влаги. Антенну можно отремонтировать прямо в походе, погнутые элементы достаточно выпрямить рукой и тд.

Вариант 50-омной антенны

По просьбам "лентяев", которые не хотели делать трансформатор, я рассчитал антенну с сопротивлением 50 ом, для непосредственного соединения с кабелем идущим к радиостанции. Внешний вид остался прежним. Кабель подключается к активному элементу напрямую, для улучшения симметрирования, рекомендую сделать один виток вокруг ферритового кольца, как можно ближе к месту пайки. Усиление, этого варианта антенны, несколько меньше и составляет приблизительно 4.3 дбд. Размеры даны для проволоки диаметром 4 мм, если у вас другой материал, нужно скорректировать размеры. Расстояние между рефлектором и активным элементом, нужно подобрать точнее, в пределах 415 - 440мм, до получения минимального КСВ.

Простая трехдиапазонная антенна

Антенна работоспособна в диапазонах 40, 20, и 10 метров. В качестве согласующего элемента применен трансформатор на ферритовом кольце марки ВЧ-50 сечением 2,0 см. Число витков его первичной обмотки - 15, вторичной - 30, провод - ПЭВ-2 диаметром 1 мм.

При применении другого сечения надо заново подобрать число витков воспользовавшись схемой, приведенной на рисунке.

В результате подбора необходимо получить минимальный КСВ в диапазоне 10 м. Изготовленная автором антенна имеет КСВ:

1,1 - на диапазоне 40 м;

1,3 - на диапазоне 20 м;

1,8 - на диапазоне 10 м.

В.Кононович (UY5VI). "Радио" №5/1971 год

Комнатная антенна на 20 метров

L1=L2=37 витков на каркасе диаметром 25 мм и длиной 60мм провода диаметром 0,5 мм. J1-разьем в небольшом пластиковом корпусе.


Компактный антенный тюнер

Схема работает отлично и согласует антенну от 80-ки до 10-ки. Потерь в тюнере при проверке на 50 Ом нагрузку на удивление не обнаружил совсем. Что в обход 100 Вт,что через настроенный тюнер 100 Вт,на всех диапазонах от 80-ки до 10-ки....Катушка,хоть и компактная но холодная... Резонанс довольно острый,и этот тюнер прекрасно можно использовать как преселектор.

С SW-2011 вообще классно все работает,т.к. в нем нет ДПФ и тюнер играет роль преселектора,что очень благоприятно сказывается на качестве приема.Применять «амидоновские» кольца,как делают на «западе» многие в этих тюнерах не рекомендую – они и дороги,и греются (вносят потери) .Просто нет смысла. Обычная катушка на пластиковом каркасе намного

лучше. По опыту –диаметр каркаса для мощности до 100 Вт не имеет особого значения – проверил от 50мм до 13 мм в последнем варианте. Никакой разницы.Главное выдержать общую индуктивность катушки около 6 мкГн,и пропорционально пересчитать отводы (или подобрать конкретно под свою антенну)

Критичным компонентами являются КПЕ. При малом зазоре их «прошивает» ,т.к. напряжение на них достигает сотен вольт. Но тем не менее, даже с малогаборитными конденсаторами я добился нормальной работы (без пробоев на 3,5 и 7 МГц как было у меня сначала) введением тумблера SW2 ,который переключает отвод выхода антенны на диапазонах 3,5 и 7 МГц к большей части витков катушки. Этим достигается снижение напряжения на конденсаторах при настройке тюнера.

Укороченная вертикальная антенна

Вертикальная антенна, описание которой приведено ниже, предназначенная для работы на 80 м диапазоне, имеет полную высоту несколько более 6 м.

Основой конструкции антенны является труба 2 диаметром 100 мм и длиной 6 м, выполненная из диэлектрика (пластика). Внутри трубы для придания ей механической прочности расположен деревянный брусок 3 с распорками 4, которые соприкасаются с внутренней поверхностью трубы. Антенна установлена на основании 7.

На трубу наматывают примерно 40 м медного одножильного провода 5 диаметром 2 мм, имеющего влагостойкую изоляцию. Шаг намотки выбирается из расчета, чтобы весь провод был равномерно намотан на трубу. Верхний конец провода припаивают к латунному диску 1 диаметром 250 мм, а нижний - через конденсатор переменной емкости 6 соединяют с центральной жилой коаксиально кабеля 8. Этот конденсатор должен иметь максимальную емкость около 150 пФ и по качеству (номинальное напряжение и т.д.) не должен уступать конденсатору, используемому в резонансном контуре выходного каскада передатчика.

Как и всякая вертикальная антенна, эта антенна требует наличия хорошего заземления или противовеса 9. Настройка и согласование антенны с фидером производится изменением емкости конденсатора 6, а при необходимости изменением длины провода, намотанного на трубу.

Добротность такой антенны выше и, следовательно, ширина ее полосы пропускания уже, чем у обычного четвертьволнового вибратора.

Построенная радиолюбителем WA0WHE подобная антенна с противовесом из четырех проводов имеет КСВ до 2 в полосе пропускания шириной около 80...100 кГц. Питание антенны осуществляется по коаксиальному кабелю с волновым сопротивлением 50 Ом.

Ground Plane на 5 КВ диапазонов

Предлагаемый вариант антенны можно отнести к разряду «конструкций выходного дня», особенно для тех коротковолновиков, которые уже имеют на своей станции «GROUND PLANE» на 20-метровый диапазон. Как видно из рисунка, в центре антенны расположена дюралюминиевая труба диаметром 25…35 мм, выполняющая функции несущей мачты и вертикального четвертьволнового элемента на диапазон 20 м.

На расстоянии 402 см от основания трубы двумя винтами М4 зафиксирована стеклотекстолитовая пластина размерами 60x530x5 мм. К ней прикреплены концы четырехпроволочных (диаметром 3 мм) вертикальных элементов, электрическая длина которых соответствует четверти длины волны для середины диапазонов 17, 15, 12 и 10 м.

К нижнему концу трубы двумя винтами М4 привинчена стеклотекстолитовая пластина размерами 180x530x5 мм. Под нижний край трубы подложена алюминиевая пластина размерами 15x300x2 мм с пятью отверстиями диаметром 4,5 мм, через которые пропускают пять винтов М4, использующиеся для крепления проволочных элементов и трубы. Чтобы был лучший электрический контакт, между винтами крепления трубы и любым ближайшим проволочным элементом вставляют отрезок медного провода.

На расстоянии 50 мм от алюминиевой пластины закрепляют еще одну такую же по размерам, но имеющую 6-12 отверстий, которые используют для крепления радиальных противовесов (по шесть на каждый диапазон).

Антенну питают по коаксиальному кабелю с волновым сопротивлением 50 Ом.

Размеры всех элементов и противовесов указаны в таблице. Расстояние между вертикальными элементами 100 мм. Из-за парусности антенны ее фиксируют двумя ярусами капроновых оттяжек. Первый ярус закреплен на расстоянии 2 м от основания трубы, второй - на расстоянии 4,1 м.

Если имеется «GROUND PLANE» на 40 м, то, используя описанный принцип, можно создать 7-диапазонную антенну.

Комнатная широкополосная...

Широкополосная комнатная активная рамочная антенна С. ван Руджи повышает эффективность приема радиостанций всех KB диапазонов (3-30 МГц) примерно в 3-5 раз по сравнению с телескопической. В связи с тем, что рамочные антенны чувствительны к магнитной составляющей электромагнитного поля, электрические помехи, создаваемые различными бытовыми приборами, оказываются немаловажно ослабленными.

Помехозащищенные коротковолновые приемные антенны

(Обзор материалов из журнала "QST ", 1988 г.)

Многие любители дальнего ра­диоприема на коротких вол­нах, а также коротковолновики, интересующиеся проведением DX -радиосвязей, особенно на НЧ KB диапазонах и имеющие в своем распоряжении лишь антенну GP с вертикальной поляризацией, час­то сталкиваются на практике с проблемой обеспечения помехозащищенного радиоприема. "Причем в условиях крупных промышленных городов, она является наи­более значительной. Сигналы DX радиостанций часто бывают довольно малы, в то время как на­пряженность поля индустриаль­ных, атмосферных и т.п. помех в точке приема может быть доста­точно высокой. При этом необхо­димо решить следующие пробле­мы:

1 - ослабление этих помех на входе РПУ при наименьшем ослаблении полезного сигнала;

2 - обеспечение возможности приема радиосигналов во всем коротко­волновом диапазоне, т.е. широкополосности антенно-фидерного устройства;

3 - проблему обеспече­ния достаточной площади для раз­мещения антенны вдали от источ­ников дополнительных помех. Значительного уменьшения уров­ня атмосферных, индустриаль­ных и т.п. помех можно добиться путем применения специальных приемных антенн с низким уров­нем шума. В литературе они именуются "Low -Noise Receving antennas ". Некоторые типы подо­бных антенн уже были описаны в (1, 2, 3). В данном обзоре обобщены некоторые интересные ре­зультаты экспериментов в этой области, полученные зарубеж­ными радиолюбителями.

ЭКСПЕРИМЕНТАЛЬНЫЕ КОРОТКОВОЛНОВЫЕ ПРИЕМНЫЕ АНТЕННЫ С НИЗКИМ УРОВНЕМ ШУМА

Начав заниматься дальним ра­диоприемом на KB необходимо прежде всего подумать о хорошей псмехозащищенной антенне, это ключ к успеху. Как уже отмечалось, в задачу помехозащищенного антенного устройства входит возможно большая степень ослаб­ления помех при наименьшем ос­лаблении полезногэ сигнала. Говорить об усилении приемной антенной полезного сигнала и особенно на НЧ KB диапазонах по известным причинам невоз­можно, т.к. такая антенна будет занимать достаточно много мес­та и иметь выраженную направ­ленность. В некоторых случаях для усиления принимаемого сигнала целесообразно приме­нять предварительные усилите­ли между РПУ и антенной, снабдив их ручной регулиров­кой усиления (1). Это относит­ся и к антеннам, о которых речь пойдет далее. Эти антенны явяются модификацией антенны Бевереджа, классический вари­ант которой показан на рис.1а. Эта антенна широко использу­ется в профессиональной KB радиосвязи и обладает некото­рыми помехозащищенными свойствами. W 1FB проводил эксперименты с модификацией антенны Бевереджа и получил интересные практические ре­зультаты, которые он опубли­ковал в апрельском номере журнала "QST ". Некоторые ко­ротковолновики сочли их за первоапрельскую шутку, в то время как другие, наоборот, до­полнили эти результаты своим практическим опытом. На рис.1б. показана антенна с эк­зотическим названием "Snake " (что значит "змея"). Она состо­ит из длинного отрезка коакси­ального кабеля, размещенного на земле или в траве. Дальний конец кабеля нагружен на безиндукционный резистор с со­противлением, равным волно­вому сопротивлению кабеля. Этот резистор необходимо по­местить в изоляционную короб­ку и обеспечить ее герметиза­цию, что предотвратит попада­ние влаги в коаксиальный ка­бель.

Так как выполнить прак­тически такую антенну для НЧ KB диапазонов получается достаточно дорого, ввиду высокой цены кабеля, W 1FB предложил выполнить антенну из двухпро­водного ленточного кабеля или провода для телефонной или радиотрансляционной линии.

Волновое сопротивление таких линий различное и может

быть определено по таблицам, а также экспериментальным путем. При определении длины данной антенны необходимо, как и в первом случае, учиты­вать коэффициент укорочения. Антенна в виде двухпроводной нагруженной линии для диапазо­на 160 метров должна иметь длину около 110 метров. Разместить та­кую антенну над землей достаточ­но трудно, и W 1FB проложил ка­бель по периметру своего участка. При этом основные свойства ан­тенны сохраняются, если вблизи нет посторонних предметов, кото­рые могут повлиять на характери­стику антенны и быть источником дополнительных шумов. Это мо­гут быть системы заземления вер­тикальной антенны, различные металлические трубы, ограды и т.п. При размещении антенны по периметру участка ослабляются ее направленные свойства и она начинает принимать сигналы с различных направлений. В дан­ной конструкции важно точно определить волновое сопро­тивление применяемой двух­проводной линии. Это необхо­димо для правильного расчета согласующего широкополос­ного трансформатора и нагру­зочного резистора, сопротивле­ние которого должно быть равно волновому сопротивлению при­меняемой линии. Коэффициент трансформации выбирают в за­висимости от применяемого ко­аксиального кабеля. Он равен:

R H /R K -(N/n) 2

где: R H - сопротивление на­грузочного резистора, Ом;

R K - волновое сопротивле­ние коаксиального кабеля, ОМ;

N - число витков обмотки трансформатора со стороны ан­тенны;

N - число витков со сторо­ны приемника (линии питания).

На рис. 1г. показана антенна, предложенная W 1HXU . Она рас­полагается над землей и выпол­няется из ленточного кабеля с волновым сопротивлением 300 Ом. Для ее настройки применен переменный конденсатор емко­стью до 1000 пф. Конденсатор подстраивают по наибольшему уровню принимаемого сигнала. На рис.1 д. показана антенна ти­па "Snake ", выполненная из ко­аксиального кабеля, имеющего длину немногим более 30 метров, который уложен в землю. Даль­ний конец кабеля имеет соединение между центральной жилой и оплеткой. На "приемном конце" оплетка ни с чем не соединяется. Эту антенну испытывал W 1HXU и получил хорошие результаты в диапазонах 30, 40 и 80 м.

ЗАКЛЮЧЕНИЕ

При выполнении антенн с низким уровнем помех следует учитывать, что они достаточно сильно ослабляют полезный сигнал, поэтому применение антенн из коаксиального кабеля оправдано лишь в случаях очень высокого уровня

индустриальных помех в точке приема. Как уже отмечалось, в этих случаях

целесообразно применение дополнительных усилителей. Антенны, выполненные из двухпроводной симметричной линии в ленточном диэлектрике обладают меньшим ослаблением полезного сигнала и дают более уверенные результаты. Следует также учесть, что применение всех описанных выше антенн возможно только в случае наличия

в РПУ входа, рассчитанного на подключение антенн, имеющих волновое сопротиыление 50 или 75 Ом. Если такаго входа нет, то неоходимо применить дополнительную катушку связи, которую можно намотать поверх катушки входного контура РПУ для того КВ диапазона, на котором вы рассчитываете применять данные антенны. Число витков катушки связи составляет от 1/ 5 до 1/ 3 числа витков контурной катушки КВ диапазона. Схема подключения дополнительной катушки показана на рис.2.

Многодиапазонная антенна с переключаемой диаграммой направленности

 Проблема создания достаточно эффективной многодиапазонной антенны в условиях ограниченного пространства, требующей относительно невысоких затрат, волнует многих радиолюбителей. Хочу предложить еще один вариант антенны "бедного радиолюбителя", удовлетворяющий этим требованиям. Она представляет собой систему слопперов с переключением диаграммы направленности, работающую на диапазонах 3,5, 7, 14, 21, 28 МГц. В основу положен принцип работы антенн конструкции RA6AA и UA4PA. В моем варианте (рис 1) с вершины 15-метровой мачты под углом около 30 40° к земле идут 5 лучей, которые одновременно выполняют роль верхнего яруса оттяжек Лучей может быть и больше, но желательно не менее 5. Общая длина каждого луча - 21 м, из нее вычитается около 80 см на отвод к коробке реле и около 15 см на крепление изолятора в нижней части луча. Таким образом, реально длина каждого луча составляет около 20 метров. Антенна питается коаксиальным кабелем с волновым сопротивлением 75 Ом длиной около 39,5 метра. Длина кабеля критична - вместе с длиной лучей она должна составлять 1 длину волны на диапазоне 80 метров. Все лучи в исходном состоянии подключены к оплетке кабеля. Выбор необходимого направления производится непосредственно на рабочем месте, при этом соответствующее реле подключает луч выбранного направления к центральной жиле кабеля. Как и у большинства направленных антенн, подавление боковых лепестков выражено сильнее, чем заднего, и составляет в среднем 2 3 балла, реже - 1 балл. Проводилось сравнение с логопериодической антенной RB5QT , подвешенной на высоте около 9 м над землей в направлении восток-запад. На 7 МГц слоппера выигрывали в этих направлениях на 1- 2 балла.

 Конструкция. Мачта - телескопическая, от Р-140, стоит на земле без дополнительного заземления, без диэлектрических вставок. Лучи - из полевого телефонного кабеля П-275 (2 провода по 8 стальных и 7 медных проводников в каждом), хорошо пропаяны с использованием кислоты. Коаксиальный кабель 75 Ом. Возможно применение кабеля с любым волновым сопротивлением, а также открытой двухпроводной линии с сопротивлением 300 600 Ом. Реле применяется типа ТКЕ52 с напряжением питания около 27 В с запараллеленными контактами, но можно применять и другие - исходя из мощности передатчика. Для питания реле применяется отдельный четырехпроводный кабель. Такая схема (рис 2) позволяет питать 6 реле, у меня в силу местных условий стоит 5. Для переключения напряжений используются кнопки П2К с зависимой фиксацией Размеры антенны и линии питания можно изменить в любую сторону, пользуясь формулой L2=(84,8-L1)*K, где L1 - длина одного плеча, L2 - длина линии питания; K - коэффициент укорочения (для кабеля - 0,66, для двухпроводной линии - 0,98). Если получившейся длины линии недостаточно, в формуле вместо 84,8 необходимо подставить 127,2. Для укороченного варианта можно подставить в формулу 42,4 м, но в этом случае антенна будет работать только на частотах выше 7 МГц.

Настройка. В настройке антенна практически не нуждается, главное - соблюдение указанных размеров лучей и кабеля. При проведении измерений ВЧ-мостом оказалось, что антенна резонирует в пределах любительских диапазонов, и ее входное сопротивление находится в пределах 30 400 Ом (см таблицу), поэтому желательно применять согласующее устройство. Я использовал рекомендованный UA4PA параллельный контур с отводами. В диапазоне 160 м данная антенна не работает - резонансная частота 1750 кГц выбрана для того, чтобы в остальных диапазонах резонанс находился в пределах диапазона.

ЧАСТОТА Zвх, Ом
1750 20
3510 270
3600 150
7020 360
7100 400
10110 50
14100 260
14250 200
14350 180
18000 50
18120 50
21150 190
21300 180
21450 160
24940 59
25150 50
28050 160
28200 200
28500 130
29000 65
29600 30